摘要:由于快速的城市化和工业化,空气污染已成为全球问题。不良的空气质量是欧洲最重要的环境健康风险,导致严重的健康问题。外部空气污染不是唯一的问题;内部空气污染同样严重,也可能导致不利的健康结果。物联网是一种用于监视和发布实时空气质量信息的实用方法。已经提出了使用微传感器进行数据收集的许多基于物联网的空气质量监测系统。这些系统专为室外空气质量监测而设计。他们使用传感器测量空气质量参数,例如CO 2,CO,PM 10,NO 2,温度和湿度。数据是通过放置在电动汽车上的一组传感器来获取的。然后将它们发送到服务器。用户可以订阅列表并接收有关本地污染的信息。该系统允许实时局部空气质量监控并将数据发送给客户。工作还提供了安全的数据传输协议,以确保系统安全。该协议提供了全系统攻击的弹性和截距,这是现有解决方案所不提供的。
摘要:本研究提出将基于 BB84 协议的量子密钥分发 (QKD) 与改进的逻辑映射 (ILM) 相结合,以提高数据传输的安全性。该方法将 BB84 的量子密钥形成与 ILM 加密相结合。这种组合创建了一个额外的安全层,默认情况下,BB84 上的操作只是 XOR 替换,而 ILM 的加入会在量子密钥上创建排列操作。实验使用多种量子测量进行测量,例如量子比特误码率 (QBER)、极化误码率 (PER)、量子保真度 (QF)、窃听检测 (ED) 和基于纠缠的检测 (EDB),以及经典密码分析,例如比特误码率 (BER)、熵、直方图分析、归一化像素变化率 (NPCR) 和统一平均变化强度 (UACI)。结果表明,该方法获得了令人满意的结果,特别是QF和BER达到了完美的水平,EBD也达到了0.999。
1 产品概述 ................................................................................................................................................ 3 2 模块特点 ................................................................................................................................................ 3 3 电气特性 ................................................................................................................................................ 4 4 模块功能描述 ............................................................................................................................................ 4 5 应用框图 ................................................................................................................................................ 5 6 模块引脚说明 ............................................................................................................................................. 5
10 GBIT S -1单极量子量子hamza dely +,Thomas Bonazzi +,Olivier Spitz,Etienne Rodriguez,Djamal Gacemi,Yanko Todorov,Yanko Todorov,konstantinos pantzas,gruegoire lian lian lian lian lian gayne gbit S -1自由空间数据传输Linfield,FrédéricGrillot,Angela Vasanelli,Carlo Sirtori* +这些作者对这项工作也同样贡献了H. Dely,T。Bonazzi,E。Rodriguez博士,D。 NEUniversité,de Paris大学,24 Rue Lhomond,75005 Paris,法国电子邮件:carlo.sirtori@ens.fr O. Spitz 博士、F. Grillot 教授 LTCI、巴黎电信、巴黎综合理工学院,19 Place Marguerite Perey,Palaiseau,91120,法国 K. Pantzas 博士、G. Beaudoin、I. Sagnes 博士 巴黎萨克雷大学纳米科学与纳米技术中心 - CNRS - 巴黎南大学,10 Boulevard Thomas Gobert,91120 Palaiseau,法国 L. Li 博士、AG Davies 教授、EH Linfield 教授 利兹大学电子与电气工程学院,Woodhouse Lane,利兹 LS2 9JT,英国 关键词:量子器件、中红外、自由空间数据传输
现有的计划和资源为这些系统和组件持续的售后支持以及可启用OEM的何种挑战提供了高质量的解决方案,以将其资源集中在更多当前的产品以及新的产品研究和开发上。现有的位置既可以很好地为非核心资产,及时且成功的产品线过渡以及持续的高级售后客户服务和支持提供直接价值的OEM所需的技术专业知识和资本资源。
摘要:物联网 (IoT) 在提供计算设备、流程和事物之间的连接方面发挥着至关重要的作用。它显著增加了通信设施,并为分布式网络提供了最新信息。另一方面,人工智能技术在新兴领域提供了众多有价值的服务。基于物联网的医疗保健解决方案方便患者、医院和专业人员观察实时和关键数据。在文献中,大多数解决方案都存在数据中断、高道德标准和可信通信的问题。此外,网络中断以及敏感和个人健康数据的反复暴露降低了对网络系统的依赖。因此,本文旨在提出一种使用区块链进行大数据传输的人工智能隐私保护物联网解决方案。首先,所提出的算法使用图形建模来开发可扩展且可靠的数据收集和传输系统。此外,它使用人工智能方法提取节点子集,并为医疗保健系统提供高效的服务。其次,利用基于对称的数字证书通过区块链提供与通信资源的真实和机密传输。通过多次模拟探索所提出的算法与现有解决方案,并证明在实际参数方面有所改进。
抽象的经典交流方案利用波浪调制是我们信息时代的基础。带有光子的量子信息技术可以在解码量子计算机的黎明中实现未来的安全数据传输。在这里,我们证明也可以将重要的波应用于安全数据传输。我们的技术允许通过在二聚体干涉仪中对相干电子的量子调制传输消息。数据是在叠加状态中编码的,该滤波器通过引入分离的物质波数据包之间的纵向移动。传输接收器是延迟线检测器,对边缘模式进行动态对比分析。我们的方法依赖于aharonov – bohm效应,但不转移阶段。证明,窃听的攻击将通过干扰量子状态并引入反应性来终止数据传输。此外,我们讨论了由于多粒子方面而引起的计划的安全限制,并提出了可以防止主动窃听的关键分布协议的实现。
用于将数据传输到NIH Helix,登录Globus,然后单击文件管理器。在路径字段中的收集字段和您的传输目标路径中输入“ NIH HPC数据传输”。然后单击共享。