最近,一场技术革命正在全球科学界引起轰动,那就是人工智能聊天机器人的出现,例如谷歌的聊天生成预训练转换器 (ChatGPT) 或 Socratic。OpenAI 的 ChatGPT 于 2022 年 11 月 30 日首次向公众推出,它将人工智能 (AI) 嵌入式系统提升到了一个全新的水平。虽然近年来人工智能通常被用作物联网 (IoT) 设备,但这些人工智能聊天机器人通过自学能力成倍地提高了模仿人类智能行为的能力。它们可以利用类似于人脑的数据处理系统来理解和与自然人类语言文本交互,从而使它们能够识别模式并根据文本输入做出预测。
• 安装在监视目标内的“远程监视子系统”,它有两个主要功能:从不同的机载传感器/接口收集数据,并将其传输到系统的其他部分或其他用户; • 传感器系统,用于接收和收集有关监视目标的监视信息; • 通信系统,用于将传感器系统连接到 SDP 系统并允许传输监视数据。地面通信也可以支持对传感器的控制和监视;以及 • 数据处理系统,用于将从不同传感器接收到的数据组合成一个数据流,可选地将监视数据与其他数据集成,并以指定的方式向用户提供/分发数据,消除不同类型传感器可能存在的不同特性。
第 2 和第 3 节列出了适用和参考文献以及本文档特有的术语和缩写;同行评审论文和其他科学出版物的参考文献列于附录 G。第 4 节提供了对 TROPOMI 仪器的一般描述的参考,该描述适用于 TROPOMI 2 级数据产品的所有 ATBD。第 5 节介绍了 NO 2 数据产品、其历史、检索设置、产品要求及其可用性。第 6 节概述了 TROPOMI NO 2 数据处理系统以及处理过程中各个步骤的重要方面。第 7 节列出了有关 NO 2 数据产品可行性的一些方面,例如计算工作量和处理所需的辅助信息。第 8 节涉及 NO 2 数据产品的误差分析。第 9 节简要概述了验证问题和可能性,例如活动和卫星比对。第 10 节对 NO 2 数据产品得出了一些结论。
第 2 和第 3 节列出了适用文件和参考文件以及本文件特有的术语和缩写;同行评审论文和其他科学出版物的参考文献列于附录 G。第 4 节提供了对 TROPOMI 仪器的一般描述,该描述适用于 TROPOMI 2 级数据产品的所有 ATBD。第 5 节介绍了 NO 2 数据产品、其历史、检索设置、产品要求和可用性。第 6 节概述了 TROPOMI NO 2 数据处理系统和处理过程中各个步骤的重要方面。第 7 节列出了有关 NO 2 数据产品可行性的一些方面,例如计算工作量和处理所需的辅助信息。第 8 节讨论了 NO 2 数据产品的误差分析。第 9 节简要概述了验证问题和可能性,例如活动和卫星比对。第 10 节针对 NO 2 数据产品提出了一些结论。
第 2 和第 3 节列出了适用和参考文献以及本文档特有的术语和缩写;同行评审论文和其他科学出版物的参考文献列于附录 G。第 4 节提供了对 TROPOMI 仪器的一般描述的参考,该描述适用于 TROPOMI 2 级数据产品的所有 ATBD。第 5 节介绍了 NO 2 数据产品、其历史、检索设置、产品要求及其可用性。第 6 节概述了 TROPOMI NO 2 数据处理系统以及处理过程中各个步骤的重要方面。第 7 节列出了有关 NO 2 数据产品可行性的一些方面,例如计算工作量和处理所需的辅助信息。第 8 节涉及 NO 2 数据产品的误差分析。第 9 节简要概述了验证问题和可能性,例如活动和卫星比对。第 10 节对 NO 2 数据产品得出了一些结论。
第 2 和第 3 节列出了适用文件和参考文件以及本文件特有的术语和缩写;同行评审论文和其他科学出版物的参考文献列于附录 G。第 4 节提供了对 TROPOMI 仪器的一般描述,该描述适用于 TROPOMI 2 级数据产品的所有 ATBD。第 5 节介绍了 NO 2 数据产品、其历史、检索设置、产品要求和可用性。第 6 节概述了 TROPOMI NO 2 数据处理系统和处理过程中各个步骤的重要方面。第 7 节列出了有关 NO 2 数据产品可行性的一些方面,例如计算工作量和处理所需的辅助信息。第 8 节讨论了 NO 2 数据产品的误差分析。第 9 节简要概述了验证问题和可能性,例如活动和卫星比对。第 10 节针对 NO 2 数据产品提出了一些结论。
第 2 和第 3 节列出了适用文件和参考文件以及本文件特有的术语和缩写;同行评审论文和其他科学出版物的参考文献列于附录 G。第 4 节提供了对 TROPOMI 仪器的一般描述,该描述适用于 TROPOMI 2 级数据产品的所有 ATBD。第 5 节介绍了 NO 2 数据产品、其历史、检索设置、产品要求和可用性。第 6 节概述了 TROPOMI NO 2 数据处理系统和处理过程中各个步骤的重要方面。第 7 节列出了有关 NO 2 数据产品可行性的一些方面,例如计算工作量和处理所需的辅助信息。第 8 节讨论了 NO 2 数据产品的误差分析。第 9 节简要概述了验证问题和可能性,例如活动和卫星比对。第 10 节针对 NO 2 数据产品提出了一些结论。
图 2-2 显示了一颗典型的卫星,它包括平台或航天器总线以及有效载荷部分。这些不同的部分执行不同的功能,因此安全漏洞的攻击媒介和影响也不同。平台或航天器总线部分负责卫星本身的飞行和导航。平台部分的核心是指令和数据处理系统 (CDHS) 中的机载计算机 (OBC) 中使用的微处理器。CDHS 实时执行飞行软件,并响应从姿态确定和控制系统 (ADCS) 收到的传感器和导航数据。同时,CDHS 通过遥测和指挥通信系统与地面站交换遥测和命令。此部分的安全漏洞可能导致卫星完全丢失,或者在最坏的情况下,引发被称为凯斯勒综合症的灾难性卫星破坏连锁反应。
ESA的基石Gaia Astormentry Mission在2020年生产了早期数据版本3。Gaia目前是太空天体物理学中最有生产力的任务,其三倍以上是2021年其他任何ESA-LEDISS的出版物数量,甚至在同年也超过了Hubble太空望远镜。瑞士通过领导与恒星变异性相关的所有方面在盖亚(Gaia)发挥着重要作用。ESA的中产阶级宇宙学障碍欧几里得在交付完整的有效载荷时实现了非常重要的里程碑。瑞士为VIS仪器和极其复杂的数据处理系统提供了一些硬件。在2021年,NASA的James Webb太空望远镜的效果发布和部署是天体物理学家的绝佳圣诞节礼物,一定会带来许多非凡的发现。瑞士参加了Miri的发展,这是两种欧洲乐器之一。
在本文档中,我们描述了开放标准如何影响航天工业构建机载数字系统(计算机、传感器、执行器、有效载荷等)的方式,这些系统通常称为数据处理系统。从最先进的技术开始,作者描述了航天工业如何从其他技术领域开发的技术中受益。工业嵌入式系统的开放标准基于板级的细粒度模块化。在空间数据处理系统中,模块化处于机箱级别。如后续章节所示,在空间领域应用模块化嵌入式系统的开放工业标准将产生一个可扩展的数据处理系统架构,与传统的联合方法相比,其质量和体积更小。此外,由于指定和集成功能模块的工作量将比传统方法少得多,因此预计用户和行业都将节省大量成本。当然,选定的工业标准不能不经过任何修改就使用。它必须适应空间领域的特定环境条件。