1 引言 1.1 以前,飞机使用航空 (ARINC 429/ARINC 629) 或军用 (MIL-STD-1553) 标准数据总线连接飞行航空电子系统。用于乘客信息和机上娱乐系统的传输控制协议 (TCP) 和/或互联网协议 (IP) (TCP/IP) 在物理和逻辑上与关键的飞行航空电子系统隔离。 1.2 新型飞机设计将 TCP/IP 技术用于航空电子系统(电子化飞机),连接驾驶舱和客舱域,从而使飞机实际上成为一个机载互联网络域服务器。这种飞机机载网络的架构允许连接到外部系统和网络,例如无线航空公司运营和维护系统、卫星通信 (SATCOM)、电子邮件、万维网等。TCP/IP 的主要优点是无需使用标准存储介质即可在飞机之间移动数据。 1.3 地面服务器(机场网关网络)通过无线方式连接到飞机网络,提供软件,并下载数据到飞机或从飞机下载数据。这导致引入新的漏洞,可能打开对机载飞机系统的访问并阻碍其运行,造成安全和航空公司业务问题。 1.4 在供应商/供应商分发软件期间,黑客还可以尝试操纵和破坏用于更新飞机航空电子设备的关键软件。主要安全措施
本章讨论了航空电子架构及其从分布式模拟控制系统到当今高性能集成模块化航空电子架构的演变。它探讨了航空电子功能按照航空运输协会 (ATA) 章节大致划分为不同领域,以及数据总线技术如何补充航空电子系统架构复杂性的增长。然后,本章回顾了 20 世纪 80 年代中期民用运输空客飞机的分布式联合数字航空电子架构中采用的主要特性和架构原则,这些架构已在波音 737、757 和 767 系列以及空客 A300、A320 和 A330 系列飞机中实现。接下来讨论综合模块化航空电子 (IMA) 架构的演变,从波音 777 飞机信息管理系统 (AIMS) 中专有的、部分实施 IMA 原则开始,到空客 A380 和波音 787 飞机上的完全开放系统 IMA 实施。我们将探讨这两种实施的主要特点和架构原则,并回顾它们的相同点和不同点。最后,本章讨论了成功实施和认证作为 IMA 架构实施的航空电子系统所需采取的设计流程。它探讨了虚拟(逻辑)系统架构的概念以及该架构在 IMA 平台上的物理实现。我们将回顾冗余、容错、隔离和分区的架构原则的实施,以支持系统安全目标并促进硬件平台和托管应用软件的独立和增量认证。
METEK Dixson 的全数字 NGI 多路复用仪表系统采用了最新的技术和制造工艺。该系统可靠且可扩展,可用于任何车辆或固定位置应用。高度模块化的 NGI 系统在设计时充分考虑了未来的适应性。指针、刻度盘和边框设计允许简单且廉价地进行外观更改或更新。所有仪表共用的内部结构和零件可最大程度降低成本,而菊花链电缆连接与浅深度外壳相结合,可最大程度地减少仪表板后的空间要求。仪表和模块连接到车速表中的系统控制单元并由其控制,以最大程度地减少车辆数据总线的负载。仪表具有光导管、车辆使用寿命 LED 背光、尖端到轮毂照明指针、270° 指针偏转和易于阅读的图形。指针由精密步进电机驱动,这种电机长期以来以耐用性和准确性而闻名。每个仪表中的红色警告 LED 减少了专用指示器的数量。明亮的橙色指针和黑底白字图形是标准配置;其他方案也可用。英制、北美自由贸易协定和公制刻度,带或不带子刻度均可根据要求提供。仪表安装在标准的 2 英寸、3 英寸和 5 英寸切口中。NGI 系统具有自校准和自测试功能,完全免维护。
本章讨论了航空电子架构及其从分布式模拟控制系统到当今高性能集成模块化航空电子架构的演变。它探讨了与航空运输协会 (ATA) 章节大致一致的航空电子功能分组到域中,以及数据总线技术如何补充航空电子系统架构复杂性的增长。然后,本章回顾了 20 世纪 80 年代中期民用运输空客飞机的分布式联合数字航空电子架构中采用的主要特性和架构原则,这些架构已在波音 737、757 和 767 系列以及空客 A300、A320 和 A330 系列飞机中实现。接下来讨论集成模块化航空电子 (IMA) 架构的演变,从波音 777 飞机信息管理系统 (AIMS) 中专有的、部分实施 IMA 原则开始,到空客 A380 和波音 787 飞机上的完整开放系统 IMA 实施。我们将探讨这两种实现的主要特征和架构原则,并回顾它们的相同点和不同点。最后,本章讨论了成功实施和认证作为 IMA 架构实施的航空电子系统所需采取的设计流程。它探讨了虚拟(逻辑)系统架构的概念以及该架构在 IMA 平台上的物理实现。我们将审查冗余、容错、隔离和分区的架构原则的实施,以支持系统安全目标并促进硬件平台和托管应用软件的独立和增量认证。
摘要 — 无人驾驶飞行器 (UAV) 或无人机的航空电子系统是机载关键电子元件,用于调节、导航和控制无人机飞行,同时确保公共安全。现代无人机航空电子设备共同协作,通过实现稳定的通信、安全的识别协议、新颖的能源解决方案、多传感器精确感知和自主导航、精确的路径规划来促进无人机任务的成功,从而保证避免碰撞、可靠的轨迹控制和无人机系统内的高效数据传输。此外,必须特别考虑电子战威胁的预防、检测和缓解,以及与无人机操作相关的监管框架。本综述介绍了每种无人机航空电子系统的作用和分类,同时介绍了每种系统中可用替代方案的缺点和优点。调查了无人机通信系统、天线和位置通信跟踪。介绍了响应空对空或空对地询问信号的识别系统。讨论了无人机经典和更创新的电源。感知系统的快速发展提高了无人机的自主导航和控制能力。本文回顾了常见的感知系统、导航技术、路径规划方法、避障方法和跟踪控制。现代电子战使用先进技术,必须采用同样先进的方法来应对,以保证公众安全。因此,本文详细介绍了常见的电子战威胁以及最先进的对抗措施和防御措施。此外,本文还在国家监管框架和认证流程的背景下分析了无人机安全事件。最后,本文回顾了无人机的数据总线通信和标准,因为它们能够实现高效、快速的实时数据传输。
(1) 操作、分析性能、排除故障、检查、安装、维护、大修、修理和改装战斗机中由众多复杂电子元件组成的作战军械系统和子系统。单个子系统或组件的示例包括:计算机化外挂管理系统或可编程武器控制系统、火控/控制航空电子设备、火控传感、瞄准系统、数字多路复用数据总线系统、电子对抗设备、武器/航空电子设备视频显示系统和离散武器/航空电子设备系统,并通过操作测试、系统调整和协调确保系统及其接口的兼容性。 (2) 分析性能并将故障隔离到轰炸/导航、火控/武器投放、武器多传感器显示器和外部机电武器系统、光电瞄准吊舱/武器接口、射频电子对抗系统、目标雷达跟踪和导弹跟踪雷达的单个子系统和/或组件。审查和分析机组人员汇报和数据传输设备信息,以帮助解决飞行中遇到的差异,并使用技术手册、示意图、逻辑和接线图、工具和测试设备(包括自动测试设备)隔离整个系统内的异常系统。通过分析电子军械系统的安装、电路和工作特性来解决飞机军械故障。调整和对准传感器、发射器、电源、显示设备、控制器、执行器、伺服器、计算机和其他相关组件。对整个系统进行瞄准,以确保电子武器投放系统的所有组件(如雷达、机枪系统、飞行员的平视显示器、攻角 (AOA) 和飞机惯性导航系统 (INS))的对准。拆除有故障的 LRU 进行维修,并识别有故障的子组件(如坏电路卡、随机存取存储器、操作飞行程序 (OFP) 和各种电子电路),并将可维修的组件安装到飞机上。检查已完成的维护以确保符合技术指令,并启动必要的表格以确保文件正确并输入飞机历史记录。
摘要:在真实的三维虚拟环境中进行飞行测试越来越多地被认为是一种安全且经济高效的评估飞机模型及其控制系统的方法。本文首先回顾并比较了迄今为止最流行的个人计算机飞行模拟器,这些模拟器已成功与 MathWorks 软件对接。这种联合仿真方法可以将 Matlab 工具箱的功能优势(包括导航、控制和传感器建模)与专用飞行仿真软件的高级仿真和场景渲染功能相结合。然后可以使用此方法验证飞机模型、控制算法、飞行处理特性,或根据飞行数据执行模型识别。然而,缺乏足够详细的分步飞行联合仿真教程,而且很少有人尝试同时评估多种飞行联合仿真方法。因此,我们使用 Simulink 和三种不同的飞行模拟器(Xplane、FlightGear 和 Alphalink 的虚拟飞行测试环境 (VFTE))演示了我们自己的分步联合仿真实现。所有这三种联合仿真都采用实时用户数据报协议 (UDP) 进行数据通信,每种方法都有各自的优势,具体取决于飞机类型。对于 Cessna-172 通用航空飞机,Simulink 与 Xplane 的联合仿真演示了成功的虚拟飞行测试,可以精确地同时跟踪高度和速度参考变化,同时在任意风况下保持侧倾稳定性,这对单螺旋桨 Cessna 来说是一个挑战。对于中等续航能力的 Rascal-110 无人机 (UAV),Simulink 使用 MAVlink 协议与 FlightGear 和 QGroundControl 连接,从而能够在地图上精确跟踪无人机的横向路径,并且此设置用于评估基于 Matlab 的六自由度无人机模型的有效性。对于较小的 ZOHD Nano Talon 微型飞行器 (MAV),Simulink 与专为此 MAV 设计的 VFTE 连接,并与 QGroundControl 连接,以使用软件在环 (SIL) 仿真测试先进的基于 H-infinity 观察器的自动驾驶仪,从而在有风条件下实现稳健的低空飞行。然后,最终使用控制器局域网 (CAN) 数据总线和带有模拟传感器模型的 Pixhawk-4 迷你自动驾驶仪将其扩展到 Nano Talon MAV 上的硬件在环 (HIL) 实现。
数字面板仪表 (DPM) 接受 de 或缓慢变化的输入信号。将该信号转换为数字形式并以十进制数字显示。DPM 将模拟到数字 (A/D) 转换器、显示解码器驱动器、十进制显示器和 DC/DC 电源转换器组合在一个组件中。提供全封装和无封装单板面板安装 DPM。DPM 适用于测试和测量应用、仪器系统、分析仪器、数据采集和记录系统、便携式设备、自动测试设备、车辆、医疗、化学和生物仪器、物理传感器(温度、压力、流速等)和工业过程控制仪器,仅举几例。Datel-Intersil 的 DM-3100 和 DM-4100 系列 DPM 采用现代 CMOS 运算放大器类型前端,具有极高的输入阻抗(通常为 1000 兆欧)和微小的偏置电流(平均 5 pA)。这些功能可避免因加载敏感测量电路而导致的错误。使用双斜率积分 AID 转换技术。该方法将输入与稳定的内部电压参考二极管或用户提供的外部比率参考进行比较。双斜率转换可抑制较高频率的噪声,并且显示的精度几乎不受内部时钟频率漂移的影响。提供电源和显示器选择。大多数带有红色固态自发光发光二极管 (LED) 显示屏的 DPM 由 +5 Vdc 稳压供电,液晶显示屏 (LCD) 由电池供电,电流极低(低至 3 mA)。几种型号采用交流供电。DPM 是采样仪器,每秒测量输入并显示读数几次。用户添加的内部电路可轻松使 DPM 适应更高的电压、电流和电阻范围。其他电路将使 DPM 适应测量温度、压力、RPM、频率、AC 和 -RMS 输入、声级、信号强度、角位置、重量等。Datel-Intersil 的大多数 DPM 仅用于显示应用,没有数据输出。但是,最近推出的型号 DM-4100D 包括 BCD 数据输出,因此 DM-41 OOD 可用于数据采集和数据记录系统。与老式的具有完全并行数据输出的竞争性 DPM 不同,这些 DPM 无法直接连接到共享数据总线,而无需用户提供接口电路,而 DM-4100D 可以直接连接到与其他设备(例如其他 DM-4100D)共享的微处理器总线。
这是一本关于计算机在飞机上的应用的书。它主要面向具有计算机科学背景并希望了解更多有关此计算机相关应用领域的人士。对于希望了解该领域其他学科的新手,它也可能很有用,以便了解与之相关的思想和词汇。本书适合航空电子系统专业本科最后一年的课程或研究生一年级的课程,或作为进入航空电子领域的工程师的参考书。术语“航空电子”是航空电子的缩写,数字航空电子是航空电子领域中涉及数字(通常是计算机化)技术的部分。这是一个重要的领域,因为现代飞机广泛使用数字航空电子设备进行各种应用。例如,现代自动驾驶仪是非常先进的设备,能够大大减少飞行员的工作量。除少数例外,自动驾驶仪完全计算机化。实际上,大多数驾驶舱功能都是计算机化的。这是近年来发生的转变的结果,其中较旧的机电技术已被计算机时代的技术所取代。飞机驾驶舱中的显示器过去主要是机械表盘和机械图形。这些机械系统正在被所谓的玻璃驾驶舱迅速取代,其中的显示器显示在与个人计算机上的显示器类似的显示器上。计算机技术的影响不仅限于驾驶舱显示器;航空电子学一词也适用于飞机结构中的计算机使用。在老式飞机中,发动机和控制面(例如襟翼和方向舵)的控制是通过机械和液压连接实现的。所有不同机械元件的建造成本、维护成本和运行重量使它们成为用数字技术替代的目标,这导致了电传操纵控制的引入。电传操纵通常是指通过数字数据总线传输控制信号与飞机结构内的计算机使用这些信号来调整控制面和发动机设置的组合。随着飞机成为飞行计算机系统,航空电子设备在其开发和生产中发挥着越来越重要的作用。所有这些工程师不可能都熟悉系统的复杂目标和操作原理。航空电子系统的构建需要来自各种学科的大型工程师团队,包括计算机工程和软件工程。不过,如果他们都大致了解航空电子系统的用途及其工作原理,那将大有裨益。正是考虑到这一点,编辑和作者编写了这本书。我们将本书分为三个部分。第一部分提供有关飞机和空中交通的背景材料,这些材料对于理解本书中讨论的计算系统的要求是必要的。第二部分描述了一系列航空电子组件,讨论了它们的具体要求和
项目详情:该项目将开发一种用于智能车辆、家电或机器人操纵器的传感表面,该表面结合了本体感受、触觉和多种其他感觉。该表面将采用超材料的形式,其物理特性使其能够出色地控制其表面上的电磁信号流。这种“超皮肤”的优势在于其简单性 - 扩展表面上密集的“超原子”传感器网络将能够仅使用单个电气连接进行本体感受形状确定、损坏检测、附近物体的接近警告以及各种其他形式的感应。如果使用分立传感器和电路(当前的行业标准)制作这种皮肤,那么它可能非常复杂且成本高昂。它将需要许多数据总线线路、信号调节电路和用于过滤的本地处理。此外,它的功耗将使其成本高昂且效率低下。即使将布线内置在结构中,多个传感器也会给原本简单的物体增加很多复杂性。我们的方法截然不同,利用了最近开发的技术,使用超材料及其支持的电磁信号。我们不使用定制电路板或嵌入式线路,而是采用由“元原子”组成的超材料 - 耦合、无源(无动力)电磁谐振器,如开口环。这种 Meta-Skin 只需要在馈电点进行电气连接和处理,每个馈电点都可以处理数百个传感位置。Meta-Skin 的属性源于它能够支持限制在超材料中的电磁表面波(驻波)。我们的创新是利用这些驻波的属性来提供有关表面状况和环境的信息。表面的扭曲、元原子的损坏或附近物体的存在将以可预测的方式改变其驻波,并且可以通过精心设计元原子及其配置来控制这种改变的程度。该项目将以埃克塞特大学现有的工作为基础,并与牛津大学的合作者合作,开发和集成带有这些 Meta-Skin 的传感器,以增加它们可以感知的刺激类型。这将结合超材料、变形结构和其他先进材料的理念,开发用于压力(触摸)、剪切力、温度、湿度等的传感器。该项目的第一年将专注于开发其中一种传感器,然后将其与现有的元皮肤集成。然后将设计更多传感器,并用于创建多感官表面。对于项目的最后阶段,可以选择与牛津大学的合作者合作,将这些元皮肤应用于机器人执行器或智能车辆的组件,并在“真实世界”场景中对其进行测试。该项目将与英国顶尖大学和工业界的合作者合作,将基础物理学推向令人兴奋且具有影响力的现实世界应用。