由于需要动态适应多样化和波动的环境,计算连续体中数据操作的复杂性不断增加,带来了重大挑战。这种复杂性源于管理庞大而异构的数据源、高效协调资源以及确保分布式环境中的最佳性能。传统的静态方法不够充分,因为它们无法适应数据量、种类和速度的快速变化。此外,各种利益相关者要求的整合和实时决策的需求使情况进一步复杂化。现代计算系统的分散性要求复杂的协调机制,以协调局部自治与全球战略。应对这些挑战需要先进的机器学习 (ML) 算法、持续学习管道和无缝的人机交互,以创建一个灵活且自适应的系统,能够有效管理数据操作的复杂动态 [ 1 ]。换句话说,这需要使用先进的类人智能和认知能力来增强现有的云端环境。这样的认知计算连续体将能够应对几个关键挑战。这些挑战包括学习利用和适应连续体中多样而复杂的硬件,管理资源的分布和动态特性,以及弥合人类利益相关者和数据操作机器之间的认知差距,确保尽管通信媒介不同,但仍然相互理解和信任。为此,欧盟资助的合作项目 INTEND 1 旨在通过利用类人智能以分散的方式解释和执行人类意图,构建下一代认知计算连续体系统 [2]。这项研究计划以三大研究支柱为基础,总体目标是创建一个集成自适应资源管理、分散决策和增强的人机交互的复杂框架,以简化数字制造、电信、智慧城市、机器人系统和视频流等不同领域的数据操作。本文概述了创建这种具有先进类人智能的认知计算连续体的研究路线图,以实现连续体中新颖的基于意图的数据操作 2。
技术现代化的工作必须包括重新思考您的员工的工作方式,所遵循的过程以及使用的工具。过去,这些挑战的影响被视为问题,而不是固有地影响运营。今天,数据管理和安全性越来越被认为是使组织运作和蓬勃发展的任务功能。
©2022 Infosys Limited,印度班加罗尔。保留所有权利。Infosys认为本文档中的信息截至其发布日期是准确的;此类信息如有更改,恕不另行通知。Infosys承认本文档中提到的商标,产品名称和其他知识产权的其他公司的专有权利。除非明确允许,均不能复制,存储在检索系统中,或以任何形式或以任何方式传输,无论是在未经本文档中的Infosys Pressys limited和/或任何命名的知识财产权持有人的事先许可的情况下以电子,机械,印刷,影印,记录或其他方式传输。均不能复制,存储在检索系统中,或以任何形式或以任何方式传输,无论是在未经本文档中的Infosys Pressys limited和/或任何命名的知识财产权持有人的事先许可的情况下以电子,机械,印刷,影印,记录或其他方式传输。