获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要 — 癫痫是一种主要的神经系统疾病,需要仔细诊断和治疗。然而,癫痫发作的检测仍然是一项重大挑战。目前的临床实践依赖于专家对脑电图信号的分析,这个过程既耗时又需要专业知识。本文探讨了使用深度学习技术自动检测癫痫发作的潜力,特别关注基于持续学习的个性化模型。我们强调了根据每个患者独特的脑电图信号特征调整这些模型的重要性,这些特征会随着时间的推移而变化。我们的方法解决了将新数据集成到现有模型中而不丢失先前获取的信息的基本挑战,这是静态深度学习模型在动态环境中应用时常见的问题。在本研究中,我们提出了一种用于癫痫发作检测的新型持续学习算法,该算法集成了重放缓冲机制。这种机制是获取新数据的同时保留过去数据的相关信息的关键,从而有效地提高了模型随着时间的推移的性能。我们的方法旨在节省资源,使其适合在嵌入式系统中实施。我们使用 CHB-MIT 数据集证明了我们方法的有效性,与不考虑灾难性遗忘的微调方法相比,F1 分数提高了 35.34%。此外,我们表明,一个 1 小时的小数据重放缓冲区足以实现与资源无限场景相当的 F1 分数,同时与资源不受约束的方法相比,24 小时内的误报率降低了 33%。索引术语 — 癫痫发作检测、持续学习、增量学习、深度学习、个性化模型、可穿戴设备