量子计算已成为一个新兴领域,可能彻底改变信息处理和计算能力的格局,尽管物理上构建量子硬件已被证明是困难的,而且当前嘈杂中型量子 (NISQ) 时代的量子计算机容易出错且其包含的量子比特数量有限。量子机器学习是量子算法研究中的一个子领域,它对 NISQ 时代具有潜力,近年来其活动日益增多,研究人员将传统机器学习的方法应用于量子计算算法,并探索两者之间的相互作用。这篇硕士论文研究了量子计算机的特征选择和自动编码算法。我们对现有技术的回顾使我们专注于解决三个子问题:A) 量子退火器上的嵌入式特征选择,B) 短深度量子自动编码器电路,以及 C) 量子分类器电路的嵌入式压缩特征表示。对于问题 A,我们通过将岭回归转换为量子退火器固有的二次无约束二元优化 (QUBO) 问题形式并在模拟后端对其进行求解来演示一个工作示例。对于问题 B,我们开发了一种新型量子卷积自动编码器架构,并成功运行模拟实验来研究其性能。对于问题 C,我们根据现有技术的理论考虑选择了一种分类器量子电路设计,并与相同分类任务的经典基准方法并行进行实验研究,然后展示一种将压缩特征表示嵌入到该量子电路中的方法。
1。Alexandre Gramfort,Martin Luessi,Eric Larson,Deni A. Engemann,Strohmeier Daniel,Christian Brodbeck,Roman Goj,Mainak Jas,Brooks,Lauri和Matti S.任何Python的Mne-Python。神经科学的前线,7(267):1-13,2013。2。Cabanero-Gome,L.,Hervas,R.,Constance,I。和Rodrig-Benite,L。(2021)。eglib:用于EEG提取的Python模块。3。 Head,T.,Mechcoder,G。L.,&Shcherbatyi,I。 (2018)。 skikit-optimize:v0。 5.2。 版本V0,5 4。 Joel,D。,Berman,Z (2015)。 人脑。 112(50),15468-15473。 5。 Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y. (2017)。 LightGBM:高速公路激动人心的梯度。 神经信息系统的进步,30,3146–3154 6。 Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。3。Head,T.,Mechcoder,G。L.,&Shcherbatyi,I。(2018)。skikit-optimize:v0。5.2。版本V0,5 4。Joel,D。,Berman,Z (2015)。 人脑。 112(50),15468-15473。 5。 Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y. (2017)。 LightGBM:高速公路激动人心的梯度。 神经信息系统的进步,30,3146–3154 6。 Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Joel,D。,Berman,Z(2015)。人脑。112(50),15468-15473。5。Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y. (2017)。 LightGBM:高速公路激动人心的梯度。 神经信息系统的进步,30,3146–3154 6。 Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y.(2017)。LightGBM:高速公路激动人心的梯度。神经信息系统的进步,30,3146–3154 6。Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。超越二元类别的性别:对不同差异,心理病理学和基因型的检查。Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Sychiatry Academy,58(8),787-798。7。TOOLE,JM和BOYLAN,G。B.(2017)。neral:新生儿脑电图的定量特征使用matlab。ARXIV预印型ARXIV:1704.05694。Vinck,M.,Oostenveld,R.,Van Wingerden,M.,Battaglia,F。,&Pennartz,C。M.(2011)。 在存在体积传导,噪声和样品大小偏置的情况下,改进了相结合的相同步指数。 Neuroimage,55(4),1548-1565。 8。 Zhang,C.,Dougherty,C.C.,Baum,S.A.,White,T。,&Michael,A。M.(2018)。 功能连通性预测性别:静止大脑连通性中性别差异的证据。 人类脑图,39(4),1765-1776。Vinck,M.,Oostenveld,R.,Van Wingerden,M.,Battaglia,F。,&Pennartz,C。M.(2011)。在存在体积传导,噪声和样品大小偏置的情况下,改进了相结合的相同步指数。Neuroimage,55(4),1548-1565。8。Zhang,C.,Dougherty,C.C.,Baum,S.A.,White,T。,&Michael,A。M.(2018)。 功能连通性预测性别:静止大脑连通性中性别差异的证据。 人类脑图,39(4),1765-1776。Zhang,C.,Dougherty,C.C.,Baum,S.A.,White,T。,&Michael,A。M.(2018)。功能连通性预测性别:静止大脑连通性中性别差异的证据。人类脑图,39(4),1765-1776。
在 GridLab 的支持下,Catalyst Cooperative 将托管和分发可再生能源数据集。该数据包括按县级发布的每小时太阳能、陆上和海上风电生产情况,汇总了美国本土的 3 公里数据。首次发布包含 2019-2023 年的数据,而 2025 年第一季度的进一步发布将包含 2014-2018 年的数据。该数据集的基础是美国国家海洋和大气管理局的高分辨率快速刷新 (HRRR) 操作数值天气预报模型生成的天气变量。该方法已用于指导现实世界的进程,例如在 2020 年为 Midcontinent Independent System Operator (MISO) 开发数据集。
4. 汇总偏差:当数据集来自整个人口时,可能会对个人或小群体得出错误的结论。这种偏差最常见的形式是辛普森悖论(Blyth,1972),当只考虑整个人口的汇总数据时,小群体数据中观察到的模式就会消失。最著名的例子来自 1973 年加州大学伯克利分校的录取(Bickel 等人,1975)。根据汇总数据,女性申请者被拒绝的次数似乎明显多于男性。然而,对部门级数据的分析显示,大多数部门男性的拒绝率更高。汇总数据未能揭示这一点,因为女性申请总体录取率低的部门的比例高于申请录取率高的部门的比例。
● 人员配备和员工技能是常见且相关的障碍。大多数员工 (57%) 报告称,数据方面的人员配备和角色是主要或中等障碍,而少数员工 (43%) 报告称,使用数据的技能是主要或中等障碍。这两个问题都值得更详细地了解。我们的角色是否合适?它们的结构是否正确?我们的技能差距在哪里?● 领导支持可能是一个常见的挑战。员工报告称,高管的关注和支持 (46%) 以及与决策者的接触 (41%) 是中等到主要的障碍。虽然这些百分比较低,但它们接近 50%,而且很重要,因为领导在推动数据使用和数据文化采用方面的作用不仅至关重要,而且可以说是最重要的组成部分。缺乏领导支持可能导致数据功能资源不足、不恰当地委派数据责任或减少在决策者未要求的情况下使用数据的积极性。理解这一挑战至关重要,因为它可能意味着一系列的事情,包括并非所有领导者都完全理解数据如何帮助他们、将数据洞察转化为可操作内容的挑战,以及/或其他因素。● 数据共享阻力以及隐私和法律问题。大多数人认为数据共享阻力(60%)和隐私和法律问题(56%)也是一个挑战。在实践中,我发现这些问题是相互关联的,并且受益于各种策略,其中最重要的是明确的法律框架、一致的数据共享标准和流程,以及持续的教育来支持两者。该州已经在这些问题上做了很多工作,我们下面的策略将其纳入其中。
九年前,我们在Parkervision,Inc。(“ Par-kervision”)对与无线通信技术相关的Parkervision,Inc。(“ Par-kervision”)提出的专利侵权行动中,确认了对不侵权的法律(“ JMOL”)的判决。Parkervision,Inc。诉Qualcomm Inc.,621 F. App'x 1009(Fed。cir。2015)(“ Par-Kervision I”)。 Parkervision还针对不同但相关的专利提起了针对高通的第二次侵权诉讼。 后一个案件,我们将称为“ 2014年诉讼”,以地方法院批准了基于Parkervision I引起的附带禁止反说业的判决,以授权Qualcom的动议对非侵犯的简易判决。 Parkervision,Inc。诉高通公司,2022 WL 1230505(M.D. fla。Mar. 22,2022)。 地方法院还批准了高通公司的动议,以排除某些证词,提议通过其有效性和侵权专家(“ Daubert Motions”)提出的某些证词。 Parkervision现在对2014年行动的处理提出上诉。 我们撤消了不侵权的判断,扭转了证词的排除,并还押了进一步的诉讼。2015)(“ Par-Kervision I”)。Parkervision还针对不同但相关的专利提起了针对高通的第二次侵权诉讼。后一个案件,我们将称为“ 2014年诉讼”,以地方法院批准了基于Parkervision I引起的附带禁止反说业的判决,以授权Qualcom的动议对非侵犯的简易判决。Parkervision,Inc。诉高通公司,2022 WL 1230505(M.D.fla。Mar.22,2022)。地方法院还批准了高通公司的动议,以排除某些证词,提议通过其有效性和侵权专家(“ Daubert Motions”)提出的某些证词。Parkervision现在对2014年行动的处理提出上诉。我们撤消了不侵权的判断,扭转了证词的排除,并还押了进一步的诉讼。
帕克森·汤姆(Parkinson Tom),Zoubir Tarek,Abdullalev Shahr,Abedtalas Musallam,Alyamani Ghana,Alibrahim Ziad,Alhusny Majdi,Alhajomar Fad,Hajhamoud Hamoud,Hajhamoud Hamoud,Ibooor Fadi,Allito Husam husam husam husam husam husam fadi Jenkins Michael,Rashwani Abdulkader,Sennou Adnan,Shaban Fateh div>
Quantumisle 致力于保护客户数据的隐私和安全。本数据保留和同意政策概述了我们如何收集、使用、保留和保护客户数据,以确保遵守适用的隐私法规。通过使用我们的服务,客户同意本政策中概述的条款,授予 Quantumisle 存储和保留必要数据的权限。
调查简介 🌟 参与 AI 准备情况调查! 📝 为了更好地了解我们行业内人工智能 (AI) 采用的现状和能力,GivingTuesday 数据共享中心邀请您参与 AI 准备情况调查。您的见解将有助于确保全球非营利组织都具备 AI 驱动进步的能力。帮助围绕非营利组织的数字化准备情况、采用障碍和 AI 的当前使用情况建立一个研究库。