•本课程旨在针对研究生和高级本科生。•课程将快节奏。•联系(alperen.ergur@utsa.edu)如果您有疑问是否有招生。•本课程不会为您提供数据科学家的工作,但是它会使您更加更好。只是不要说出我的话 - 来倾听行业专家,了解该课程如何使您在学术和行业角色中受益。
空间幻象技术的最新进展已实现了分析组织形态,细胞组成和生物分子表达模式的新方法。这些进步正在促进数字病理新兴领域中新的计算工具和定量技术的开发。在这篇综述中,我们调查了使用数字化的组织病理学幻灯片和补充材料开发用于空间映射的OMIC数据分析的计算方法的当前趋势,并重点介绍了与泌尿生殖学肿瘤学研究有关的工具和应用。评论包含三个部分:1)组织幻灯片分析的图像处理方法的概述; 2)与空间解决的OMIC数据分析的机器学习集成; 3)讨论当前局限性和未来在临床决策过程中整合机器学习的方向。
大规模脑成像数据集的一个主要目标是提供用于研究异质弹出的资源。从这些数据集中为各个受试者提供功能性脑网络的表征将具有预测认知或临床特征的巨大潜力。我们第一次提出了一种技术,即概率的功能模式(sprofumo),该技术可扩展到英国生物库(UKB),有预期的100,000名参与者,并且在个人和人群中层次估算了层次的功能性脑网络,同时对两种信息之间的双向流量进行了影响。使用仿真,我们显示了模型的效用,尤其是在涉及显着的跨主题可变性的情况下,或者需要在网络之间划定细粒度的差异。随后,通过将模型应用于4999名UKB受试者的静止状态fMRI,我们将静止状态网络(RSN)绘制为单个受试者,其详细范围比以前在UKB(> 100 rsns)中可能绘制了,并证明这些RSN可以预测somecorimotor andsocorimotor and somecorimotor and Emperife and Elighe colesions and Level Consoge。此外,我们证明了该模型的几个优点,而不是独立的组件分析与双重回归(ICA-DR)相结合,尤其是在估计RSN的空间配置和认知性状的预测能力方面。所提出的模型和结果可以为将来从大数据中对个性化的脑功能纤维进行调查打开新的门。
通过刷子,滚筒或喷雾剂应用。供应商:Dulux New Zealand,DuluxGroup(新西兰)PTY LTD公司编号:55 133 404 118 / co. 2355191街地址:150 Hutt Park Road新西兰赫特市电话:0800 800 800 424紧急电话号码:澳大利亚 - 1800 220 770;新西兰 - 0800 220 770
结果:71931例癌症患者(54.7%男性; 76.5%白人;指数为63.6±12.2岁的平均年龄)接受ICI治疗(ICI组)和71931名癌症患者(男性为54.7%;男性为54.7%;平均白色;平均年龄为63.5±12.4岁),从未接受过ICI(比较组)(比较组)。相关的Kaplan-Meier曲线在所有随访年中ICI组中的葡萄膜炎风险显着增加(P <0.001)。在144个月的随访期间,ICI组的葡萄膜炎风险也更高,危险比(HR)为2.39(95%CI:2.07- 2.75)。发现了特定葡萄膜炎疾病的风险,例如虹膜炎,脉络膜视网膜炎,视网膜血管炎,未染色的脓性内po炎,泛 - 葡萄膜炎和交感神经炎。亚组分析表明,ICI受体中葡萄膜炎的发展的危害比升高,涵盖了65岁以下的个体以及65岁及65岁以上的人。与非ICI对手相比,在所有性别中,在白人和亚洲种族,具有吸烟史的人,具有吸烟史和血脂异常等合并症的患者中,在所有性别,具有吸烟史的葡萄膜发育率升高的危害比。还进行了有关单一疗法与组合性ICI方案的其他亚组分析。从抗PD-1的类别接受单一治疗的个人
与其他被忽视的疾病一样,狂犬病的监视数据与准确描述疾病负担的需要是不足的,并且不兼容。在过去的二十年中,进行了估计全球人类狂犬病死亡的核心,结果每年14,000至74,000例。然而,模型参数的不确定性,建模方法的不一致以及全球负担研究中包含的每个国家 /地区的数据质量差异导致最近对狂犬病死亡率的巨大怀疑。缺乏数据不仅限制了狂犬病消除策略的效率和监测,而且严重降低了倡导国际资助机构支持的能力。同时,最脆弱的社区继续遭受可能通过更强大的报道来阻止的死亡。零by 30全球策略消除了2030年消除狗介导的人类狂犬病,建议特有国家采用部门间方法,综合咬合案例管理(IBCM),作为增强监视的成本效益方法。但是,IBCM的有效实施受到了有限能力,资源,知识,技能和对合规性态度等挑战的阻碍。为了解决这个问题,世界卫生组织和反对狂犬病论坛的联合会开发了几种开放式工具,以指导强大的数据收集实践中的国家控制计划,以及在线数据存储库,以实用简化报告并鼓励数据共享。在这里,我们讨论了如何最好地利用当前和未来的计划来改善现有监视工具的实施,并优先考虑有效的数据报告/共享,以优化2030年消除的进度。
个性化和精确药物的长期目标是为具有疾病的患者准确预测给定治疗方案的结果。目前,由于患者群体中的潜在因素导致对感兴趣的药物的反应或对治疗相关的不良事件的反应不佳,因此许多临床试验无法满足其终点。事先确定这些因素并纠正它们可能会导致临床试验的成功增加。通过对健康和患病个体的OMICS进行综合和大规模的数据收集工作,导致了宿主,疾病和环境因素的宝藏,这有助于旨在治疗疾病的药物的有效性。随着OMICS数据的增加,人工智能允许对大数据进行深入分析,并为现实世界中的临床使用提供了广泛的应用,包括改善患者的选择和鉴定可行的伴侣疗法靶标,以改善更多患者的可转换性。作为用于复杂药物疾病 - 宿主相互作用的蓝图,我们在这里讨论了使用OMICS数据预测使用免疫检查点抑制剂(ICIS)预测癌症免疫疗法的反应和不良事件的挑战。基于OMICS的方法是改善患者结局的方法,因为在ICI病例中也已应用于广泛的复杂疾病环境中,体现了OMIC在深度疾病分析和临床使用中的使用。
在我的指导下成功完成了题为“联系人管理系统”的项目,部分满足了 2023-2024 学年 Savitribai Phule Pune 大学人工智能与数据科学系工程二年级的要求。
