(3) 必须证明危险螺旋桨效应不会以超过“极小概率”定义的概率发生。单个故障的估计概率可能不够精确,无法评估危险螺旋桨效应的总发生率。对于螺旋桨认证,如果可以预测单个故障引起的危险螺旋桨效应概率不超过每螺旋桨飞行小时 1x10 -8,则可以认为本段的目的已经实现。还应接受的是,在处理这种低数量级的概率时,不可能有绝对的证据,必须依靠工程判断和以前的经验,并结合合理的设计和测试理念。
与所述低保真方法提供的机会相比,高保真几何方法可能增加的部件疲劳寿命很小,而且投资成本要高得多。使用典型的航空航天制造公差范围进行的简单评估表明,部件寿命存在±5%的差异。这比低保真方法低了两个数量级,但投资和所需数据量却大幅增加。这是因为固有的材料疲劳性能取决于分子水平的部件几何形状。如果这是可能的,那么对飞机部件进行任何这种详细程度的扫描都会产生大量的数据;飞机结构由多少个部件组成,有多少个自由度?
摘要:美国国防部使用受激辐射光放大(即激光或激光器)并非新鲜事,包括激光武器制导、激光辅助测量,甚至将激光用作武器(例如机载激光器)。激光用于电信支持也并非新鲜事。光纤中激光的使用已经颠覆了人们对通信带宽和吞吐量的认识。甚至在太空中使用激光也不再是新鲜事。激光正用于卫星到卫星的交联。激光通信可以使用数量级更少的功率传输数量级更多的数据,并且可以将发送和接收终端的暴露风险降至最低。新颖之处在于使用激光作为卫星系统地面部分和空间部分之间的上行链路和下行链路。更重要的是,使用激光在移动的地面部分(例如海上的船舶、飞行中的飞机)和地球同步卫星之间发送和接收数据正在蓬勃发展。本文探讨了使用激光作为连接地面和太空系统的卫星通信信号载体的技术成熟度。本文的目的是制定关键性能参数 (KPP),为美国国防部近期卫星采购和开发的初始能力文件 (ICD) 提供参考。通过了解使用激光而不是传统射频源作为卫星上行和下行信号载体的历史和技术挑战,本文建议美国国防部使用激光从需要保持低检测、拦截和利用概率的移动平台发送和接收高带宽、大吞吐量数据(例如,航母战斗群穿越敌对作战区域,无人机在敌方区域上空收集数据)。本文还打算确定商业部门的早期采用者领域以及可能适应使用激光进行传输和接收的领域。
1300小时LR7,IEB摘要:自主系统正在成为无数应用程序的驱动技术。 许多学科应对使这些系统值得信赖,适应性,用户友好和经济的挑战。 另一方面,现有的纪律界限延迟,甚至可能阻碍进步。 我认为,设计和验证自主系统在学习,正式方法和控件的交集时需要混合解决方案。 我将在顺序决策过程中学习中的这种混合解决方案的示例。 这些结果提供了有效地将基于物理,上下文或结构性的先验知识整合到数据驱动的学习算法中的新颖手段。 它们通过对系统以前没有经历的环境和任务的几个数量级和通用性提高了数据效率。 我将在一些有希望的未来研究方向上发表评论。1300小时LR7,IEB摘要:自主系统正在成为无数应用程序的驱动技术。许多学科应对使这些系统值得信赖,适应性,用户友好和经济的挑战。另一方面,现有的纪律界限延迟,甚至可能阻碍进步。我认为,设计和验证自主系统在学习,正式方法和控件的交集时需要混合解决方案。我将在顺序决策过程中学习中的这种混合解决方案的示例。这些结果提供了有效地将基于物理,上下文或结构性的先验知识整合到数据驱动的学习算法中的新颖手段。它们通过对系统以前没有经历的环境和任务的几个数量级和通用性提高了数据效率。我将在一些有希望的未来研究方向上发表评论。
量子计算可以开发出一种新型算法,在多项式时间内解决一些已知的难题,这引起了人们对它日益增长的兴趣。它的应用领域非常广泛,从金融[1]到化学,因此大量公司都在投入资源进行开发。IBM [2]和Google [3]等重要参与者已经开始开发量子计算机来执行这些算法,并创建了可供全球用户使用的解决方案,比如SDK和量子编程语言。正如我们从图1.1中看到的那样,这些技术预计将会非常快地发展,因为预计在两年内,量子设备能够存储和管理的信息量将提高一个数量级。
如今,空间碎片已成为卫星系统的主要威胁之一,尤其是在低地球轨道 (LEO) 上。据官方估计,有超过 700,000 个碎片物体有可能摧毁或损坏卫星。通常,无法从地面直接识别撞击的影响。但是,高分辨率雷达图像有助于检测这种可能的损坏。此外,还可以对未知的空间物体或卫星进行调查。因此,DLR 开发了一种名为 IoSiS(太空卫星成像)[2, 3] 的实验雷达系统,该系统基于现有的转向天线结构和名为 GigaRad [1] 的多用途高性能雷达系统,在传播方向上的分辨率优于 5 厘米。在横向或方位角方向上,通过使用逆合成孔径雷达 (ISAR) 技术,可以获得高空间和距离独立分辨率。该技术基于沿合成孔径从不同角度对物体进行相干观察,需要在轨道通过期间精确跟踪物体。因此,要在距离和方位角上获得相似的分辨率,就必须进行宽方位角观测。对于一个 ISAR 图像,5 厘米的预期空间分辨率意味着大约 25° 的观测角。如此高的空间分辨率不是遥感雷达应用的标准。目前的地球观测系统实现的分辨率在几分米的数量级,比现有系统差一个数量级。因此,这种改进需要相应更高的系统和轨道校正性能。特别是,对雷达电子设备、天线和馈电频率响应进行足够精确的校准至关重要。此外,还必须对观测物体进行精确的轨道测定。本文概述了 IoSiS 雷达系统的主要技术特点。讨论了主要的误差源和相应的解决方案。说明了最终生成几厘米分辨率的雷达图像的校准工作。
2参见Dickens等。(2007),Grigsby等。 (2019)以及Hazell and Taska(2019)的论文,这些论文发现了数据中存在DNWR的信息。 现实世界中的劳动力市场摩擦可能会大大超过DNWR,但是我们的模型将这种建模设备作为一种简约的方式来捕获这种摩擦,以丰富的动态定量贸易模型。 3我们的基线分析还假设美元与其他国家 /地区的货币之间的灵活汇率。 但是,我们还进行了固定汇率的替代分析,对美国的影响是相似的。 可应要求提供此分析的结果。 4引入其他类型的名义锚使我们无法使用RUV中开发的有效Alvarez和Lucas型算法来处理DNWR,从而增加了计算时间的数量级。 实施更现实的名义锚定于将来的研究。(2007),Grigsby等。(2019)以及Hazell and Taska(2019)的论文,这些论文发现了数据中存在DNWR的信息。现实世界中的劳动力市场摩擦可能会大大超过DNWR,但是我们的模型将这种建模设备作为一种简约的方式来捕获这种摩擦,以丰富的动态定量贸易模型。3我们的基线分析还假设美元与其他国家 /地区的货币之间的灵活汇率。但是,我们还进行了固定汇率的替代分析,对美国的影响是相似的。可应要求提供此分析的结果。4引入其他类型的名义锚使我们无法使用RUV中开发的有效Alvarez和Lucas型算法来处理DNWR,从而增加了计算时间的数量级。实施更现实的名义锚定于将来的研究。
应使用完善的测量装置 [4] 校准已完成的光电探测器的响应度,以获得所需的不确定度。校准是针对低温辐射计 [5] 或传递标准探测器(图 4)进行的。在校准装置中,探测器的对准至关重要,对于反射陷阱探测器,通常观察到来自设备的反射光束沿着入射光束传播。对于微型陷阱,正确的对准具有挑战性,因为它的小有效区域隐藏在外壳中。另一方面,在陷阱配置中使用光电探测器的好处是,测量中反射光束的不良影响(例如进入前置光学器件等)减少了大约三个数量级。
与可再生能源技术相关的生命周期排放差异很大,对于那些以某种方式集中了可再生资源的技术,它们最低(例如,在风和水力的情况下,或者在能量作物的情况下随着时间的流逝)。风力涡轮机在所有可再生能源中的排放量最低,并且比化石燃料产生的排放量最低,通常是超过一个数量级。光伏和太阳能热系统的生命周期排放量最高。但是,它们对大多数污染物的排放量也远低于与化石燃料技术相关的排放。此外,随着PV细胞的转化效率的增加,与PV相关的排放可能会进一步下降,并且制造技术转向薄膜技术,而薄膜技术的能量较少。
实际上,Codd 将性能概念归入了我们归类为“宗教”的主题类别。尽管“性能良好”这一短语比“更好”略微客观,但定义性能意味着什么还是很有帮助的。对于我们这些使用标准计算机配置(如 VAX)和标准磁盘驱动器(请注意,磁盘技术在过去 10 年中没有重大的“数量级”速度/性能突破)的人来说,性能概念可以定义为两种基本形式:执行“典型”事务需要多长时间,以及每秒可以处理多少个“典型”事务。在后一种情况下,由于促进了对数据库的多个并发访问,因此每秒可以实现比公式 1/典型事务时间下更多的事务。 - -