瑞萨电子的四方扁平无引线 (QFN) 封装系列产品是一种相对较新的封装概念,目前正在快速发展。该封装系列包括通用版本 QFN,以及 TQFN、UTQFN 和 XQFN 等较薄版本。该系列的引线间距为 0.4 毫米及以上。四方扁平无引线的一个子集是双面类型(4 个侧面中只有 2 个有引线),其中包括 DFN、TDFN、UTDFN 和 XDFN 等版本。在本文档中,术语 QFN 代表所有系列选项。该系列具有多种优势,包括降低引线电感、小尺寸近芯片级封装、薄型和轻重量。它还使用周边 I/O 焊盘来简化 PCB 走线布线,而裸露的铜芯片焊盘技术可提供良好的热性能和电气性能。这些特性使 QFN 成为许多新应用的理想选择,这些应用对尺寸、重量以及热性能和电气性能都很重要。
5.4 降阶模型和基于物理的修正 5-6 5.4.1 方法论 5-6 5.4.1.1 旋翼诱导流入动力学 5-6 5.4.1.2 旋翼间干扰 5-8 5.4.1.3 气动干扰 5-9 5.4.1.4 机身气动 5-9 5.4.1.5 带旋翼超前-滞后的发动机/传动系统动力学 5-9 动力学 5.4.1.6 传感器和斜盘执行器动力学 5-10 5.4.2 应用 5-10 5.4.3 优势和局限性 5-10 5.5 基于物理的模拟的模型参数调整 5-11 5.5.1 方法论 5-11 5.5.1.1 D 级飞行员训练的参数调整 5-11模拟器 5.5.1.2 工程研究的参数调整 5-11 模拟 5.5.2 应用 5-12 5.5.3 优点和局限性 5-12 5.6 关键模拟常数的参数识别 5-12 5.6.1 方法 5-12 5.6.2 应用 5-12 5.6.3 优点和局限性 5-12 5.7 从点 ID 模型和修剪数据进行拼接模拟 5-13 5.7.1 方法 5-13 5.7.2 应用 5-15 5.7.3 优点和局限性 5-15 5.8 参考文献 5-16
绿胡子遗传元素编码罕见的可感知信号、信号识别能力和对显示相同信号的其他人的利他行为。假定的绿胡子在各种生物中都有描述,但在一个系统中所有特性的直接证据很少。盘基网柄菌的 tgrB1-tgrC1 同源识别系统编码两种多态性膜蛋白,可保护细胞免受嵌合相关危险。在发育过程中,TgrC1 充当配体信号,TgrB1 充当其受体,但利他行为的证据是间接的。在这里,我们表明混合野生型和活化的 tgrB1 细胞会增加野生型孢子的产生,并将突变体降级为利他茎,而混合野生型和 tgrB1 缺陷细胞会增加突变孢子的产生和野生型茎的产生。 tgrB1 缺失的细胞只会欺骗携带相同 tgrC1 同种异型的伴侣。因此,TgrB1 激活会产生利他行为,而 TgrB1 失活会导致特定同种异型的欺骗,这支持了绿胡子概念,并深入了解了同种异型识别、利他行为和剥削之间的关系。
垂直堆叠的三维集成电路 (3D IC) 中的芯片间电通信由芯片间微凸块实现。微凸块的电迁移可靠性对于了解基于 3D IC 的微电子系统的可靠性至关重要。本文报告了通过热压键合在两个芯片之间形成的 Cu-Sn-Cu 微凸块的电迁移可靠性的实验研究。双芯片 3D IC 组装在线键合陶瓷封装中,并在不同温度下的空气和氮气环境中进行电迁移测试。测量了微连接链和开尔文结构的故障寿命和平均故障时间 (MTTF)。结果表明,Cu-Sn 微连接的本征活化能介于 0.87 eV 和 1.02 eV 之间。基于故障分析,提出了可能的故障机制。这项研究的结果有望提高人们对 3D IC 中电迁移可靠性的根本理解,并促进基于 3D IC 的稳健可靠的微电子系统的开发。2014 Elsevier BV 保留所有权利。
分子激子在自然和人工光收集、有机电子学和纳米级计算中起着核心作用。分子激子的结构和动力学对每种应用都至关重要,它们敏感地受分子堆积的控制。脱氧核糖核酸 (DNA) 模板化是一种强大的方法,它可以通过亚纳米级定位分子染料来实现受控聚集。然而,需要对染料堆积进行更精细的亚埃级控制,以针对特定应用定制激子特性。在这里,我们表明,将轮烷环添加到用 DNA 模板化的方酸菁染料中,可以促进难以捉摸的倾斜堆积排列,并具有非常理想的光学特性。具体而言,这些方酸菁:轮烷的二聚体表现出具有近乎等强度激子分裂吸收带的吸收光谱。理论分析表明,这些跃迁本质上主要是电子跃迁,并且仅在较窄的堆积角度范围内具有相似的强度。与方酸二聚体相比,方酸:轮烷二聚体还表现出更长的激发态寿命和更少的结构异质性。本文提出的方法可能普遍适用于优化激子材料,以用于从太阳能转换到量子信息科学的各种应用。
1. (内部安装)将 CPU 放入蒸发器外壳或管路组盖内。 (外部安装)使用双面胶带将 CPU 安装到表面或使用螺钉固定。 2. 将导线引入接线空间。将传感器引入蒸发器空间。请勿剪断传感器线。如有必要,在布线前从传感器上取下支架。 3. 将传感器安装到盘上(图 1a):a. 将传感器连接到盘支架上。b. 将盘支架夹到蒸发器冷凝盘中水位最高的位置,用力按入到位 c. 将导线向上放置,探针向下放置。d. 通过将传感器推入盘支架来调整传感器高度。盘支架具有单向棘轮机构。如果传感器在盘中设置得太低,请从导线侧推动传感器,直到其脱离盘支架,然后重置。调整传感器,使探针针位于冷凝盘边缘下方。当水位达到探针针时,开关将跳闸。 4. 将传感器安装到盘管上(图 1b): a. 将传感器安装到盘管支架上。盘管支架有 2 个可选夹子,一个用于常规 7mm 盘管,另一个用于 5mm 盘管。根据实际盘管直径选择夹子尺寸。 b. 将盘管支架夹到蒸发器盘管上。将支架夹插入翅片之间或盘管 U 型弯头处。 c. 将电线向上放置,探针针向下放置。 d. 通过将传感器移至蒸发器冷凝盘中水位最高的位置来调整传感器高度。调节传感器,使探针针位于冷凝盘边缘下方。当水位达到探针针时,开关将跳闸。 5. 接线选项 1*:干扰通信线(图 2) a. 确认主电源已关闭。阅读空调安装手册以了解接线端子布局。将“电源输入”线连接到室内机电源端子。b. 剪断室内机的通信线。如图 2 所示连接“COM-NC”和“NC”线。使用绝缘胶带绝缘裸露的“COM-NO”和“NO”线。(警告:触电危险。未绝缘未使用的开关线可能导致人身伤害和/或财产损失。c. 连接电线时使用接线螺母。
沿 Y 轴的孔宽度为 0.5 毫米,沿 x 轴的孔长度为 20 毫米。每个 I 形孔都蚀刻在传输线贴片平面下方。经过参数研究,计算出了设计的最佳尺寸。此外,传输线在几个馈电网络中通常不是直线,但在几个馈电网络中是直线。它们被认为在某种程度上折叠起来。当水平传输线折叠成 90 度垂直传输线时,输入的大部分功率会在不连续处反射回源,从而降低系统的性能,因为它会导致线路电容发生变化,从而影响线路的阻抗。天线设计中采用了斜接弯曲方法来减少传输线损耗。斜接弯曲的目的是去除少量电容,将线路的阻抗恢复到匹配阻抗。图 4 描绘了用于解决这些问题的微带斜接弯曲的结构。截断通道的尺寸(x)可以通过方形弯头的对角线D来计算。弯头的尺寸可以借助以下方程式[4-6]来计算。
摘要:在汽车工程领域的制动系统对于维持车辆的性能,稳定性和安全性至关重要。盘式制动器是制动机制最流行的形式之一,因为它在各种驾驶情况下具有有效的停止力和可靠性。尽管如此,工程师一直在寻找新的创造性方法来改善盘式制动设计,这是他们不断寻求提高车辆性能和效率的一部分。盘式制动器修改提供了一种可行的方法来实现某些性能目标,例如增加耐用性,减轻体重,更好的热管理和改善的结构完整性。通过定制盘式制动组件设计和材料,工程师可能能够达到前所未有的安全性,寿命和制动效率。关键词:盘式制动,热通量,压力,变形,盘状轮廓,优化。
GLYCOOL ™ 系统 Liebert GLYCOOL 自由冷却系统结合了传统的乙二醇冷却装置以及第二个冷却盘管、控制阀和比较温度监测器。这使得系统能够利用较低的室外温度来减少或消除压缩机的运行时间。在较冷的月份,从室外干冷却器返回的乙二醇溶液通过预管道调节三通阀路由到第二个盘管。第二个盘管位于蒸发器盘管的上游,成为房间的主要冷却源。该盘管的尺寸足够大,可以提供与两个压缩机的制冷循环期间获得的相同的冷却能力。
