o 例如,在具有大倾斜角的钟摆轨道上飞行(这会增加对东西重力变化的敏感性)将需要进一步研究,因为由此产生的两个航天器的相对速度可能对于 LRI 操作来说太高。o 对于低于 420 公里的高度(为了进一步增加对重力变化的敏感性),非重力力的增加幅度可能对于加速度计来说太大,可能需要更复杂的 AOCS。o 将航天器的分离从 220 公里增加到 300 或 400 公里(这将降低加速度计误差的影响)另一方面会增加两颗卫星之间的指向要求,这可能会抵消大距离的积极影响。所有这三个都需要在后续研究中进一步调查。
摘要 中心自旋模型(其中单个自旋粒子与自旋环境相互作用)在量子信息技术中得到广泛应用,并且可用于模拟无序环境中量子比特的退相干等。我们提出了一种实现中心自旋模型超冷量子模拟器的方法。所提出的系统由单个里德堡原子(中心自旋)和极性分子(环境自旋)组成,它们通过偶极-偶极相互作用耦合。通过将内部粒子状态映射到自旋状态,可以模拟自旋交换相互作用。可以通过直接操纵环境自旋的位置来精确控制模型。作为示例,我们考虑环境自旋的环形排列,并展示系统的时间演化如何受到环的倾斜角的影响。
背景/客观•甘蔗(Saccharum spp。Hybrid)是用于生物燃料和餐桌糖商业生产的主要原料。优化冠层结构以改善光捕获,具有提高生物质产量的巨大潜力。ligulesless1(LG1)参与草中叶状的叶子和耳膜发育。然而,确认假定的甘蔗LG1基因座并定义甘蔗中最佳叶角是具有挑战性的。•在这项研究中,我们使用CRISPR/CAS9证明了甘蔗中假定的LG1基因的有效,多型,靶向诱变。与先前的LG1突变研究相比,根据LG1的共编辑频率获得了一系列叶角表型,从而更深入地研究该性状。在鉴定LG1等位基因变体和通过CRISPR/CAS9靶向诱变的重组DNA载体的构建后,通过16个基因编辑的甘蔗线进行了重组DNA载体,并以7.4至100%的LG1读数为7.4至100%的共同编辑频率。 在随机温室和现场试验中评估 LG1突变型线,用于叶片倾斜角,渗透到冠层,生物质积累和与生物质相关的性状中。 结果温室和现场评估显示了叶片倾斜角的意识形态,生物质产量显着增加。 叶倾角角对应于向冠层和耕种数的光传输。在鉴定LG1等位基因变体和通过CRISPR/CAS9靶向诱变的重组DNA载体的构建后,通过16个基因编辑的甘蔗线进行了重组DNA载体,并以7.4至100%的LG1读数为7.4至100%的共同编辑频率。LG1突变型线,用于叶片倾斜角,渗透到冠层,生物质积累和与生物质相关的性状中。结果温室和现场评估显示了叶片倾斜角的意识形态,生物质产量显着增加。叶倾角角对应于向冠层和耕种数的光传输。线L35在〜12%的LG1 ngs读取中表现出功能丧失的线读数增加了18%的干生物量收益率,叶片倾斜角降低了56%,耕种数量增加了31%,节间数量增加了25%。
利用高程角度和方位角是在光伏(PV)中将太阳能最大化为电能的非常重要的部分。最大化PV功率输出的一种方法是设计一个单轴跟踪器系统,并使用太阳位置计算器应用来考虑太阳的方位角和高程角度。单轴跟踪器系统是基于PV 45°表面倾斜角的位置设置的,然后是90°的角度和135°的倾斜角。测试结果表明,单轴跟踪器PV系统设计可以根据已编程的角度设置来工作。然后使用电池控制系统支持PV可靠性系统,当电池电压在多云的天气条件下降至12 V以下和电池电量过多时,电池电压下降到12 V以下。PZEM-017模块与电池的集成将支持对电池电量使用的监视。PV能量数据转换性能使用单轴跟踪器技术在12.00 pm的最大功率达到631.72瓦DC,最低功率在6.00 pm达到56.02瓦DC。