描述了“3”ABsTnAcT 实验,揭示了 Fe-3Si 钢和普通碳钢板中缺口和裂纹前塑性区的三维特征。这些将平面应力状态定义为施加应力和板强度的函数。它们还为 DM(Dugdale - Muskhelishvili)模型作为平面应力下裂纹的试验性弹塑性解决方案提供了理论依据。描述了一种考虑加工硬化和速率敏感塑性变形的方法的改进方法。这样,无缺口拉伸性能(应力-应变曲线和面积减小)可用于计算塑性区尺寸、裂纹尖端位移和应变、裂纹延伸应力和断裂韧性,与实验结果一致。最后,该方法扩展到延性裂纹扩展,并用于计算
目录 页码 1.0 化学成分和机械性能 1.1 简介 5 1.2 测试结果 6 2.0 疲劳裂纹扩展速率表征 2.1 简介 7 2.2 测试设备 7 2.3 样品制备 10 2.4 测试程序 11 2.5 测试结果与讨论 12 3.0 非线性断裂韧性表征 3.1 简介 42 3.2 测试设备 42 3.3 样品制备 43 3.4 测试程序 44 3.5 测试结果与讨论 44 表格列表 表 1.2.1 化学分析摘要 5 表 1.2.2 机械性能摘要 6 表 2.5.1 使用恢复力模型估计 K 残余 15 表 2.5.2 疲劳裂纹扩展测试条件和结果摘要 16 表 3.5.1 断裂韧性测试条件和结果摘要45 附图列表 图 2.2.1 试验设备和试验装置的照片(实验室空气环境) 8 图 2.2.2 试验设备和试验装置的照片(海水环境) 9 图 2.3.1 疲劳裂纹扩展速率试验的 C(T) 样品图 10 图 2.5.1 FCGR 响应比较实验室空气中 5083-H321 合金的重复试验结果。18 图 2.5.2 FCGR 响应比较实验室空气中 5086-H116 合金的重复试验结果。19 图 2.5.3 FCGR 响应比较实验室空气中 5383-H116 合金的重复试验结果。20 图 2.5.4 FCGR 响应比较海水中 5083-H321 合金的重复试验结果。21 图 2.5.5 FCGR 响应比较 5086-H116 合金在海水中的重复测试结果。22 图 2.5.6 FCGR 响应比较 5383-H116 合金在海水中的重复测试结果。23
相也被认为是潜在候选者。9,10 过去几十年来,人们制造并检验了许多此类材料,以确定它们在高超音速飞行期间遇到的极端环境中的使用潜力。与许多需要使用传统金刚石磨削方法来创建测试样本或部件的传统先进陶瓷不同,许多 UHTC 的导电性足以使样本能够使用电火花加工 (EDM) 来制造。11-13 这项工作的目的是确定使用 EDM 制造的样本的强度和断裂韧性是否与使用传统金刚石磨削方法制备的样本不同。密苏里科技大学和陆军研究实验室 (ARL) 还按照相应的美国材料与试验协会 (ASTM) 标准测量了硬度。
复合修复材料代表了一类独特的现代生物材料,因为它们在外观和功能上都取代了生物组织。早期配方的特点是存在聚合收缩、边缘适应不当、近端接触不适当、变色或染色以及继发龋齿等问题。牙科复合材料需要改善上述性能并实现充分接触,并且已经进行了大量尝试来实现这些目标。为了保护健康的牙齿结构,减少微渗漏和继发龋齿的形成,增加断裂韧性,减少边缘色素沉着和术后敏感性,以及技术的发展,新一代复合材料已经生产出来。本文讨论了树脂修复材料的进展。
lished。数据来自已出版文献和航空航天公司提供的未出版报告。疲劳和疲劳裂纹扩展分析仅限于在室温下对空气中的样品进行恒幅载荷或应变循环所获得的信息。断裂韧性数据来自中心裂纹拉伸板、部分穿透裂纹样品和紧凑拉伸样品的测试。使用最小二乘回归方法在统计基础上分析疲劳和疲劳裂纹扩展数据。使用反双曲正切函数将独立变量与因变量关联起来。对于疲劳,使用等效应变参数来解释应力比效应并将其视为独立变量,而将循环疲劳寿命视为因变量。有效应力强度
在500–600°C下具有优异比强度的轻质高强度钛合金不仅用于飞机的结构构件、紧固件和发动机部件,还用于汽车发动机部件和/或排气系统,根据其使用情况,需要具有强度、疲劳强度、断裂韧性、抗蠕变和抗氧化等各种性能。主要在飞机领域研究了微观结构、织构、化学成分等对钛合金疲劳性能的影响,通过引入故障安全和损伤容限设计,提高了可靠性。1–3) 最近,正在进行如下所述的停留疲劳研究和利用集成计算材料工程(ICME)一致预测其疲劳寿命的研究和开发。4) 在日本,除了飞机之外,还开发了汽车、消费品(例如高尔夫球杆头)和医疗设备的应用。因此,除了对钛合金的疲劳、裂纹扩展和断裂韧性的基础研究之外,5、6)还进行了大量针对各自用途所需性能的研究。
复合材料的层间断裂韧性。随着层间断裂特性在材料评级和损伤容限设计中的重要性逐渐被接受,这一主题继续受到广泛关注。本节中的论文讨论了混合模式分层的具体主题,以及使用混合模式弯曲试件和一些新开发的试件(Sriram 等人和 Gong 和 Benzeggagh)在静态和疲劳载荷下生成混合模式失效准则。此外,还介绍了使用夹层或珠子的层间增韧材料中的分层特性(Kageyama 等人、Lee 等人和 Armstrong-Carroll 和 Cochran)。两篇论文(Kussmaul 等人和 Chou 等人)讨论了非单向铺层断裂试件中的分层。此外,还介绍了 III 型分层试验(Sharif 等人);该论文获得了研讨会的最佳演讲奖。
摘要。超材料是一种经过设计的材料,具有天然材料所不具备的特性,这为创造具有全新功能的材料提供了广泛的机会。膨胀材料是一种超材料,它的独特之处在于它们被设计成具有负泊松比,而天然材料具有正泊松比。膨胀材料已经显示出一些非常有前途的能量吸收特性,可广泛应用于汽车(碰撞吸收器、悬架部件)、医药(假肢)、服装(鞋底)等领域。此外,它们还表现出优于传统材料的其他特性,例如:剪切模量增加、声学性能更好、断裂韧性提高等。介绍了在 CATIA V5 软件中建模的方法以及使用 3D 打印技术(如 MSLA(掩模立体光刻设备)、选择性激光烧结 (SLS) 和熔融沉积成型 (FDM))的各种制造方法。
钛合金在500~600℃的高温下具有高强度,可用于飞机的结构件、紧固件和发动机部件,此外还用于汽车发动机部件和/或排气系统,根据其使用情况,需要具有强度、疲劳强度、断裂韧性、抗蠕变性和抗氧化性等各种性能。钛合金的微观结构、织构、化学成分等对疲劳性能的影响主要在飞机领域进行研究,通过引入故障安全和损伤容限设计,提高了可靠性。1-3) 最近,正在进行如下所述的停留疲劳研究以及利用集成计算材料工程(ICME)来一致预测其疲劳寿命的研究和开发。4)日本除了飞机之外,还开发了汽车、消费品(例如高尔夫球杆头)和医疗设备的应用。因此,除了对钛合金的疲劳、裂纹扩展和断裂韧性的基础研究外,5,6)还进行了大量与各自用途所需的性能相关的研究。
四糖4,4'-二氨基甲苯甲烷(TGDDM)环氧树脂。这些树脂的热分化是出色的。他们的弱点包括高水分吸收,低断裂韧性以及3%或更低的突破。1双苯酚A(DGEBA)的二甘油乙醚也常用。环氧树脂用交联剂固化,其中胺交联剂至少具有两个反应性胺基团,它们交联环氧化物树脂。可以根据所用的固化剂,选择适当的时间和固化温度以及使用以最大程度地减少复合材料中的空隙的存在来改变固化的环氧树脂的机械性能。通常使用的固化剂是二氨基二苯基磺基(DDS),三乙二烯四矿(TETA),二杨酰胺(Dicyandiamide(dicy),苯甲酰二甲基胺(BDMA)和硼龙三甲基胺(Boron Trifluoride)。