摘要:这项研究的目的是在从血液培养物中分离出的细菌上检测圣约翰麦芽汁,nigella sativa,丁香,橙皮和大蒜油,以确定其抗菌作用。在2021年12月1日至2022年1月1日之间,将一百个血液样本送往阿塔图克大学医学微生物学实验室,并通过血液培养系统进行了分析。从血液培养中分离的细菌被转移到血琼脂中。细菌悬浮液是从0.5 MC Farland浊度的细菌菌落中制备的。通过液体微稀释法确定植物提取油的抗菌活性,最小抑制浓度和最小的杀菌浓度值。另外,测量了圆盘扩散法的区域直径。在研究中包括的100个临床样本中,仅检测到植物提取物油的抗菌作用。显示出7.81 µg/ml的最有效抗菌作用对溶血葡萄球菌和肠杆菌的抗菌作用。大蒜油在7.81 µg/mL时表现出对大肠杆菌和葡萄球菌溶血菌的最有效抗菌作用。nigella sativa油在3.9 µg/ml时显示出对溶血葡萄球菌的最有效抗菌作用。橙皮油在1.95 µg/ml时表现出针对粪肠球菌的最有效抗菌作用。©2023 NTMS。关键字:关键字:抗菌活动;植物提取物;血液培养;微稀释;区域直径。大蒜,大肠杆菌上的大蒜油,葡萄球菌溶血菌和肠杆菌,溶血性葡萄球菌上的圣约翰麦芽汁油和肠杆菌的肠球菌,nigella sativa sativa sativa油在葡萄球菌上已经有效。
18的实际用途补贴(3)文档审查,2023年5月29日,星期一(4)访谈审查审查审查,6月13日,星期二和2023年6月14日,星期三(5)最终审查,最终审查,2023年6月30日,星期五(6)17家已选择赠款的公司
从「 AI 智能应用对日常生活之翻转与创新」专题报告中可以印证,人类的智慧和AI 科技,两方互相依赖,互惠互利,相辅相成,互相成就另一方, AI 科技的突飞猛进,不但使得人类的智慧得以更充分地展现,甚至藉由AI 而变得更添智慧,进而能做到以前人类做不到的事情。本专题报告内容含括了AI 与语音辨识、老人生活、工程建造、 5G 科技运用、运动、教育学习、人文等领域,人类的智慧结合AI ,未来似乎有无限想像的可能。刘炯朗院士主讲「科技与人文的平衡-AI 靠哪边站」压轴,阐述了一个不同的观点来看科技和人文,两者分别代表着电脑和人脑,就像翘翘板的两端,而中间点就是AI 的文明思路。本专题报告密切结合了人工智慧与人文关怀,能让大家深入了解AI 科技在日常生活中的翻转、创新,以及它将给人类带来更多更方便的生活和更美好的未来。当然,我诚挚期盼着这本专题报告,藉由主讲者无私地分享精辟的见解,必然助益产官学研
・秋永博之(产综研) 新材料研究在 AI 加速器开发中的作用 ・冈崎敦也(日本 IBM) 使用非易失性存储器件的神经网络集成电路 ・高桥博友(东京大学) 脑组织作为物理储存器的信息处理能力 ・内田厚(埼玉大学) 使用复杂光子学的光学储存器计算和光学决策 ・高木真一(东京大学) 使用铁电器件的储存器计算 ・田中雄一郎、田向仁、立野克美、田中博文、森江隆(九州工业大学)
Yugo R. Kamimura、Kenzo Yamatsugu、Tomoya Kujirai、Hitoshi Kurumizaka、Atsushi Iwama、Atsushi Kaneda、Shigehiro A. Kawashima *、Motomu Kanai * DOI:10.1038/s41467-025-56204-2 URL:https://doi.org/10.1038/s41467-025-56204-2 注释(禁运信息) 禁止在 1 月 24 日日本时间晚上 7 点(英国时间 24 日上午 10 点)之前出版。 这项研究得到了以下赠款的支持:科学研究的授予(项目编号:23H05466,23H05475),科学研究B(项目编号:21H02074),学术变革性研究A(项目编号:24H02328),学术变革研究b(项目编号:22H050501018),挑战7(PISPICT), (项目编号:21K19326,22K19553),年轻科学家研究(项目编号:22K15033),研究活动启动支持(项目编号:23K19423),AMED,AMED(项目编号:24AMA121009,21CM0106510H0006),JST-ERATO(JST-ERATO)(JST-ERATO)(JST-ERATO)(JST-ERATO)(JST-ERATO编号:JPMJERST和JPMJESS),和JPMJES119011901190119011901190119019019019019019019019019001900号。 (项目编号:JPMJCR24T3)、IAAR 研究支持计划、朝日硝子基金会研究补助金、武田科学基金会研究补助金以及持田纪念医学和制药科学基金会研究补助金。 术语表(注1) 催化剂:能促进特定化学反应但自身不发生改变的分子。通过反复作用,可以使用少量的催化剂来生产大量所需的产品。 (注2)表观遗传学:通过化学修饰DNA或蛋白质而不改变DNA碱基序列来控制基因表达的机制。遗传信息以基因组的形式表达,而化学修饰的信息则称为表观基因组。 (注3)乙酰化:在蛋白质的赖氨酸残基上的氨基(-NH2)上引入乙酰基(-COCH3)的反应。 (注4)翻译后修饰:蛋白质在细胞中合成后添加的各种化学修饰。它参与调节蛋白质活性、稳定性和定位。