xxviii. 光电子学 xxix. 量子物理与器件 xxx. 三维集成电路 xxxi. 集成电路与微电子系统中的 ESD 防护设计专题 xxxii. 半导体光电器件与物理 xxxiii. 材料分析 xxxiv. 自旋电子学器件与磁存储器 xxxv. 纳米线与无结晶体管 xxxvi. 对于以上未列出的其他课程,请与学院管理人员协商批准。
在本研究中,我们通过观察分子水平的化学和电子态、评估微观和宏观尺度的粘合强度以及分子水平,研究了碳纤维复合材料粘合界面粘合力产生的机制。通过了解这一点并系统地了解工艺因素的影响,并评估新的表面改性方法,我们将研究如何获得超越现有技术和方法的粘合强度。
8 木下健 长崎科学技术大学校长 东京大学名誉教授 9 佐藤胜明 东京农工大学名誉教授 10 佐藤千明 东京工业大学科学技术研究所副教授 11佐藤诚 东京工业大学名誉教授 12 谷冈明彦 东京工业大学名誉教授 13 中山智博 国家研究开发机构日本科学技术振兴机构研究开发战略中心企划管理室主任/研究员 14 花田修二 东北大学名誉教授 15 绿川胜美 日本理化学研究所光子工程中心主任 16 村口正宏 学部电气工程系教授17 东京理科大学工学部博士 17 森本正幸 东海原大学教授 18 山本英和 千叶工业大学工学部电气电子工程系教授 19 东京理科大学工学院机械工程系教授 山本诚 20 日本科学技术振兴机构创新研究开发推进项目项目经理 山本义久 21 横山健二 系教授东京工业大学应用生物学系应用生物学系 22 吉田雅之 公共投资杂志主编
在这项研究中,我们将使用计算来预测材料的最佳组合和组合方法(不断改变材料成分)来简化样品制备和评估,并开发多种材料,我们的目标是建立一种新的材料。能够高效寻找和评估适合在各个波段振荡的激光材料的研发模型。
■知识产权:Tokugan 2022-196304“生产基因组编辑的细胞和促进杂交的方法”,Tokugan 2024-057389“核酸裂解酶,核酸,矢量,矢量,辅助套件,用于修改核酸和核酸的方法3。碎片,套件和方法用于产生基因工程的真核细胞”,未发表的应用,Tokugan 2024-057383“产生突变体,基因表达方法和真核生物细胞的方法”,未发表的应用,■公立资助的项目的名称,使用的名称:Young Scientist(a):2017-2019,挑战2.2022.202 Ental Research b:2023-2027
Jun 13, 2024 — 功能材料事业部拥有先进的火法和湿法冶金工艺,采用侧吹炉工. 艺、真空蒸馏工艺、以及溶剂萃取、离子交换、电解等先进工艺,回收. 和精炼各种含稀散金属固体、浆料和溶液。
背景和目标:镍加工行业一直与二氧化碳排放问题有关。二氧化碳的产生发生在镍加工的不同阶段,从预处理到冶炼和精炼。除了Offgas外,镍加工部门还产生称为炉渣的固体废物,这是冶炼和精炼过程的副产品。镍行业中的矿渣之一众所周知,与其他元素相比,这是占主导地位的。这项研究的主要目的是通过利用从镍加工行业得出的富含铁的炉渣来研究二氧化碳捕获的过程。目的是评估在固体碳酸气体过程中施加富含铁炉炉的可行性,以捕获二氧化碳,重点是化学反应和整体动力学。方法:这项研究中分析的富含铁矿石包含大量氧化铁。从理论上预见到富含铁炉的氧化铁可能会隔离二氧化碳。这项研究是通过准备材料,经过碳酸过程,然后进行各种特征(包括X射线衍射仪分析和热重量分析)开始的。另外,进行计算以确定样品中二氧化碳的百分比和碳化效率。还使用多种模型进行了动力学分析,例如质量传输,化学反应和扩散控制模型,以估计发生的二氧化碳捕获机制。的发现:富富奈克产业的富含铁矿石的二氧化碳捕获能力在某种程度上有限,尽管仍然相对谦虚。富含铁的炉渣在彻底分析后有效地用于捕获二氧化碳。在进行碳酸过程4小时的持续过程后,炉灶中二氧化碳的百分比显着增加,从初始价值从0.28%提高到1.12%。捕获二氧化碳气体的捕获是由于硅酸盐与二氧化碳气体和水蒸气之间的反应形成辅助石。在捕获二氧化碳时,富含铁的炉渣在扩散控制模型下运行。结论:据报道,富含铁的炉渣可在175摄氏度捕获二氧化碳和二氧化碳和水蒸气状况,这是从热力学计算和实验中证明的。铁(II)碳酸盐是一种由富含铁炉灶的二氧化碳捕获反应产生的碳酸盐化合物。然而,在未来的研究中需要考虑铁(II)二氧化碳和水蒸气气氛中碳酸盐的稳定性。将来可以进行进一步的研究,以探索利用富铁炉炉捕获二氧化碳气体的潜力,这是基于这项初步研究的发现。
[1] Xavier Besseron、Alban Rousset、Alice Peyraut 和 Bernhard Peters。2021 年。使用 preCICE 在 XDEM 和 OpenFOAM 之间进行欧拉-拉格朗日动量耦合。在第 14 届 WCCM 和 ECCOMAS 大会 2020 上。[2] Christian Bruch、Bernhard Peters 和 Thomas Nussbaumer。2003 年。固定床条件下的木材燃烧建模。Fuel 82(2003 年)。https://doi.org/10.1016/S0016-2361(02)00296-X [3] José María Cela、Philippe OA Navaux、Alvaro LGA Coutinho 和 Rafael Mayo-García。2016 年。促进能源研究和技术开发方面的合作,应用新的百亿亿次 HPC 技术。在第 16 届 IEEE/ACM 国际集群、云和电网计算研讨会 (CCGrid) 上。https://doi.org/10.1109/CCGrid.2016.51 [4] Tao Chen、Xiaoke Ku、Jianzhong Lin 和 Hanhui Jin。2019 年。热厚生物质颗粒燃烧建模。Powder Technology 353 (2019)。 https://doi.org/10.1016/j.powtec.2019.05.011 [5] Gerasimos Chourdakis、Kyle Davis、Benjamin Rodenberg、Miriam Schulte、Frédéric Simonis、Benjamin Uekermann、Georg Abrams、Hans-Joachim Bungartz、Lucia Cheung Yau、Ishaan Desai、Konrad Eder、Richard Hertrich、Florian Lindner、Alexander Rusch、Dmytro Sashko、David Schneider、Amin Totounferoush、Dominik Volland、Peter Vollmer 和 Oguz Ziya Koseomur。 2021. preCICE v2:可持续且用户友好的耦合库。 ArXiv210914470 Cs (2021)。 [6] 艾汉·德米尔巴斯。 2005. 可再生能源的潜在应用、锅炉动力系统中的生物质燃烧问题以及燃烧相关的环境问题。能源与燃烧科学进展 31 (2005)。https://doi.org/10.1016/j.pecs.2005.02.002 [7] Andrea Dernbecher、Alba Dieguez-Alonso、Andreas Ortwein 和 Fouzi Tabet。2019. 基于计算流体动力学的生物质燃烧系统建模方法综述。生物质转化生物参考。9 (2019)。https://doi.org/10.1007/s13399-019-00370-z
“SM-3 Block IA发射” 摘自防卫省网站 关于2007年12月18日从“金刚”号驱逐舰发射SM-3导弹的试验结果 http://www.mod.go.jp/j/approach/defense/bmd/20081218_shiken.html
