6- 18GHz 频率覆盖 4GHz 瞬时带宽 16 个天线元件(线性阵列) 角度覆盖/TTD 阵列:± 45o 方位角,± 45o 仰角 相邻波束交叉:低于波束峰值 3 - 8 dB 下一个相邻波束交叉 = 低于波束峰值 20 dB 且大于最高旁瓣
针对多用户第五代应用,提出了一种非常规的准模块化基站相控阵架构综合技术。通过在最佳不规则阵列的元素处保持均匀的幅度和线性前进的相位,可以实现功率高效的旁瓣抑制,从而有效地减轻用户间的干扰。布局不规则性是在阵列切片内实现的,该切片以旋转方式重复。采用顺序旋转技术来获得模块化并改善圆极化特性。使用改进的 k 均值聚类算法来形成最佳子阵列。仿真结果表明,所提出的准模块化拓扑在旁瓣性能和集成阵列设计复杂性之间提供了良好的折衷。
特性由阵列的孔径决定。但是,由于稀疏阵列中的元素数量减少,平均旁瓣电平高于相同孔径的全采样阵列的预期值。假设主瓣幅度为 M,正如预期的那样,对于一个由 M 个标准化和完全局部化的元素组成的阵列,每个元素在主响应轴方向上贡献一个同相矢量。然而,在远离主响应轴的给定方向上,由于元素位置随机,矢量并不同相,而是表现出统计随机相位。单位矢量与随机相位相结合,产生一个均方根 (rms) 幅度为 rm 的旁瓣电平。因此,对于随机阵列,平均旁瓣与主瓣的功率比为 M/MI = 1/M (Lo, 1964, 1965)。
合成孔径雷达 (SAR) 用于全天候、全时高分辨率空中和空间地形成像。SAR 成像不受光照和天气条件的影响,比光学成像更具优势。SAR 的一些应用包括监视、瞄准、3D 成像、导航和制导、移动目标指示和环境监测。该项目旨在对合成孔径雷达系统进行系统级设计、建模和仿真,并使用 TI C6416 DSP 实现 SAR 信号处理器。系统参数已根据所有约束和实际限制进行指定。已制定系统的性能指标,例如距离分辨率和横向分辨率等,并根据所需性能制定了系统级规范。以MATLAB为主要工具,对所设计系统参数的准确性和正确性进行了测试。完成了脉冲多普勒雷达的仿真,包括波形设计、目标建模、LFM脉冲压缩、旁瓣控制和阈值检测。在MATLAB中实现了SAR图像形成算法(多普勒波束锐化)。
背景和理由:开槽波导阵列 (SWA) 天线通常用于雷达应用,其设计规范要求窄波束宽度、高增益、低旁瓣和承载相对高功率的能力。SWA 天线为满足这些要求提供了良好的解决方案。大多数 SWA 天线都是使用 CNC 加工、电火花蚀刻 (EDM) 或钎焊制造的。这些制造方法始终取决于加工公差、制造精度和刀具半径。然而,在制造金属结构时最明显的问题是重量,而制造公差问题会降低制造天线的重复性和性能,尤其是在工作频率增加的情况下。对于太空应用,重量问题是一个特别困难的问题,很明显,为此类星际任务节省的每一克重量都非常重要。这就是我们的新专有技术在解决重量、重复性和加工公差问题方面变得有用的地方。项目旨在:1. 设计基于目标技术的 Ka 波段开槽波导阵列天线工程模型,采用射频
AE4-393:航空电子考试解决方案 2007-10-29 1. 通信、导航、监视 [a] 压力高度和飞机识别。 [b] 两种模式的工作原理如下: • SSR 模式 A:询问间隔 P 1 和 P 3 等于 8µs。应答器使用飞机识别码 (ACID) 回复,该码由 ATC 定义并由飞行员在应答器代码界面上设置。它是一个 12 位代码,即有 2 12 种可能性,或 4096 个代码。 • SSR 模式 C:询问间隔 P 1 和 P 3 等于 21µs。应答器以 100 英尺 (QNE) 的步长回复飞机压力高度。 [c] 应答器答复由两个帧脉冲之间均匀分布的十二个数据脉冲组成。 SSR 发射三个询问脉冲,P 3 、P 2 和 P 3 。P 3 相对于 P 1 和 P 2 的位置决定了应答器应以哪种模式 (A/C) 应答。然而,每个天线都有一个主瓣和几个旁瓣。信号如图 1.1 所示。
未来的机载雷达将需要在由杂波和干扰组成的干扰背景下检测目标。空时自适应处理 (STAP) 是指多维自适应滤波算法,它同时将来自阵列天线元件的信号和相干雷达波形的多个脉冲组合在一起,以抑制干扰并提供目标检测。STAP 可以改善对被主瓣杂波遮蔽的低速目标的检测、对被旁瓣杂波掩盖的目标的检测以及在杂波和干扰组合环境中的检测。本报告分析了解决 STAP 问题的各种方法。回顾了最佳或完全自适应处理。计算复杂性以及从有限可用数据中估计干扰的需求使完全自适应 STAP 不切实际。因此,需要部分自适应空时处理器。介绍了降维 STAP 算法的分类,其中算法根据所采用的预处理器类型进行分类。例如,波束空间算法使用空间预处理,而后多普勒方法在自适应处理之前执行时间(多普勒)滤波。在某些情况下,可以利用杂波的特殊结构来设计产生最小杂波等级的预处理器。对于每个类,可以采用样本矩阵求逆 (SMI) 或基于子空间的权重计算。仿真结果显示
基于有源电子扫描天线 (AESA) 的雷达具有“优雅降级”这一理想特性。此类雷达使用小型化发射-接收 (TR) 模块,少数模块故障不会导致任务失败。例如,在基于 AESA 的地面 MTI 雷达中,少数模块故障不会影响阵列性能。在这种情况下,静态地面杂波以零频率为中心,没有与运动相关的多普勒频移。然而,在机载 AESA 雷达中,由于平台运动和杂波通过天线旁瓣泄漏,地面杂波具有与角度相关的多普勒频率。因此,天线旁瓣电平决定了要针对其执行目标检测的旁瓣杂波。检测性能受信号与干扰加噪声比 (SINR) 控制。对于机载监视雷达,TR 模块的随机和系统故障及其对 SINR 的影响是特征化的。结果表明,单通道处理不能有效地提供平滑降级功能,因为故障导致的 SINR 损失很大。但是,与随机故障相比,系统故障对 SINR 损失的影响较小。还提出了一种有效的阵列馈电方案。
更新了 ARA 的定义 36.5 GHz 信道 ARA 放宽至 0.75K,以与总不确定度计算 (MRD-240) 保持一致。MRD 中提供的总体不确定度计算定义 1-sigma 限制适用于稳定性要求 MRD-250、MRD-260、MRD-270 增加了关于极端海风中 L 波段测量操作使用的部分。更新了微波成像任务以包括 COWVR 任务。表 MRD-2 更新了 36.5 GHz 信道的新 ARA 值 0.75 K。完全修订了空间采样要求。MRD-190 和 MRD-200 进行了澄清和相应修改。添加了沿扫描和跨扫描定义 澄清了到海岸的距离定义 添加了瞬时视场 (IFOV) 定义 添加了仰角定义 添加了方位角定义 澄清了足迹和足迹椭圆的定义 添加了全波束定义 添加了旁瓣定义 澄清了宽波束效率定义