我还要感谢在我成长为工程师期间给予我巨大支持的工程师们。特别是,我要感谢 John Deere 的 Brian Booth,他教我硬件工程的基础知识。同样,我要感谢 Appareo Systems 的 Bradly Schleusner 和 Nicholas Butts,他们教我编写嵌入式软件的重要基础知识。此外,我还要感谢 James Richie 博士开设了一门非常有用的天线理论课,正是这门课让我得以完成本论文的 RF 部分。我还要感谢 Kellen Carrey 的反馈以及在开发 RF 控制器方面的帮助。最后,我要感谢我的实验室同事 Milad Ghorbani 和 Wenkai Guan,他们设法忍受了本论文产生的噪音,并提供了有用的反馈和支持。
第 5 章 直升机部件、部分和系统 ................................................................................5-1 简介 ................................................................................5-1 机身设计 ..............................................................................5-2 旋翼叶片设计 ..............................................................................5-2 动力装置设计 ......................................................................5-2 反扭矩系统设计 .............................................................5-2 起落架系统设计 .............................................................5-2 机身 ................................................................................5-2 铝 ................................................................................5-3 优点 .............................................................................5-3 缺点 .............................................................................5-3 复合材料结构 .............................................................5-4 优点 .............................................................................5-4 缺点 .............................................................................5-4 机身 .............................................................................5-4 主旋翼系统 .............................................................................5-4 刚性旋翼系统 .............................................................5-5 半刚性旋翼系统 .............................................................5-5 全铰接式旋翼系统 .............................................................5-8 轴承
摘要:为研究上下旋翼干扰效应以及进给比、轴倾斜角和升力偏移对缩比同轴刚性旋翼系统气动性能的影响,对缩比同轴刚性旋翼系统在悬停和稳定前飞过程中的气动性能进行了实验研究。旋翼系统采用直径2 m、四叶片上下无铰链旋翼,安装在同轴旋翼试验台上。实验在中国空气动力研究与发展中心(CARDC)的φ3.2 m风洞中进行。旋翼系统在0°~13°的总距范围内进行了悬停测试,并在进给比高达0.6的情况下进行了前飞测试,重点关注了轴倾斜角和升力偏移扫掠。为了使共轴旋翼的运行方式与实际飞行方式相似,悬停飞行时将扭矩差调整为零,前飞时保持恒定升力系数。在同轴旋翼中以相同的螺距角设置进行了孤立单旋翼配置试验。悬停试验结果表明,下旋翼的品质因数 (FM) 值低于上旋翼,且均低于孤立单旋翼。此外,在相同的叶片载荷系数 (C T / σ) 下,同轴旋翼配置可以获得更好的悬停效率。前飞时,有效升阻比 (L/De) 为
美国海军陆战队航空计划要求 H-1 直升机运行至财政年度 (FY) 30,届时预计会有联合替换飞机可用。AH-1Z 和 UH-1Y 将是当前 AH-1W 和 UH-1N 直升机的升级版和改造版,具有“零时间”机身。H-1 升级计划 (AH-1Z 和 UH-1Y) 的主要优势是两种型号之间大约 85% 的主要部件通用,从而减少了后勤支持、维护工作量和培训要求。AH-1Z 和 UH-1Y 将具有通用的 T700-GE-401 发动机、辅助动力装置、变速箱、传动系统和尾梁。AH-1Z 和 UH-1Y 直升机都将采用改进的四叶主旋翼和尾旋翼系统。用通用四叶旋翼系统替换双叶旋翼系统将提高性能、可靠性和可维护性。
功能 VXP 专注于收集、处理和解释飞机传动系统内各个部件(包括发动机、变速箱、轴、风扇、旋翼系统和其他动态部件)产生的数据。在所有情况下,都可以在发动机现场、测试单元内或任何其他平台位置查看振动频谱。收集并保留这些数据,以便任何熟练的技术人员进行更详细的分析。
飞行员应考虑到风向,并考虑风将如何影响执行飞行机动所需的功率。发动机提供的功率或旋转扭矩通过旋翼系统和传动系统传输,需要尾桨来抵消扭矩效应。在飞机运行的所有机动过程中,都必须充分抵消主旋翼扭矩。如果风向不利,且施加了过多扭矩而没有采用反扭矩,飞行员可能会遇到一种称为 LTE 的状况。LTE 是一种环境条件,其中风是导致失去方向控制的主要因素,这是由于直升机意外的旋转扭矩运动造成的,而飞行员没有预料到或没有(及时)应用适当的控制输入来控制飞机。
根据短期稳定性参数和静态纵向杆稳定性的设计标准,确定俯仰力矩特性中水平稳定器的设计和尺寸的目标值(单位为 teffilS)。研究了 Cooper Harper 等级 (CHR) 与短期特性之间的关系以及俯仰力矩斜率与短期特性之间的关系。发现,如果整个机身的俯仰力矩斜率为负,则短期响应的 CHR 将小于 3 V。对于静态纵向杆稳定性,确定由于 Oryx 和本次演习中要设计的飞机具有相同的旋翼系统和相同位置的水平稳定器,因此如果俯仰力矩斜率与攻角曲线相似,则静态纵向杆稳定性将相似。
背景。V-22 鱼鹰联合先进垂直飞机(V-22)是一种倾转旋翼垂直起降飞机,旨在满足多军种作战要求。V-22 设计融合了复合材料、数字航空电子设备、电传操纵控制和生存能力等先进技术。它以直升机的形式起飞和降落,升空后可转换为涡轮螺旋桨飞机进行远程飞行。该转换能力是通过倾斜或旋转安装在每个机翼末端的发动机舱来实现的。每个发动机舱都配备有发动机和变速箱,可驱动直径为 38 英尺的旋翼。V-22 液压系统由三个独立的子系统组成,为 V-22 旋翼系统控制和控制面提供液压动力。
背景。V-22 鱼鹰联合先进垂直飞机(简称 V-22)是一种倾转旋翼垂直起降飞机,其开发旨在满足多军种作战需求。V-22 设计融合了复合材料、数字航空电子设备、电传操纵控制和生存能力等先进技术。它以直升机的形式起飞和降落,升空后可转换为涡轮螺旋桨飞机进行远程飞行。这种转换能力是通过倾斜或旋转安装在每侧机翼末端的发动机舱来实现的。每个发动机舱都配备有发动机和变速箱,可驱动直径为 38 英尺的旋翼。V-22 液压系统由三个独立的子系统组成,为 V-22 旋翼系统控制和控制面提供液压动力。
目录 目录 iv 图表列表 vi 表格列表 vii 合规矩阵 1 执行摘要 3 第 1 章简介 7 第 2 章详细任务概况 10 第 3 章概念评估和筛选过程 14 第 4 章总体飞机布局和重量分解 19 第 5 章子系统的详细设计 25 5.1 机身 ……………………………………………………………. 25 5.1.1 底部结构 …………………………………………... 25 5.1.2 尾梁 …………………………………………………... 26 5.1.3 内部布局 ……………………………………………… 26 5.2 驱动系统 ……………………………………………………….. 27 5.2.1 发动机配置 ……………………………………….. 27 5.2.2 变速箱配置 ………………………………… 27 5.3 结构集成 …………………………………………………….. 31 5.4 起落架 …………………………………………………………….. 32 5.4.1 配置 ………………………………………………... 32 5.4.2 轮胎尺寸 …………………………………………………… 33 5.4.3 油压尺寸 …………………………………………………… 34 5.5 主旋翼毂设计……………………………………….. 34 5.5.1 旋翼系统 ………………………………………………… 34 5.5.2 翼型选择 ……………………………………………… 35 5.6 斜盘控制系统 …………………………………………. 38 5.7 篮筐设计 ………………………………………………………... 40