Anindya Jana接受了B.Haldia技术学院,WBUT和M. Tech的技术学位。 分别于2007年和2010年获得Jadavpur大学的学位。 他已经完成了博士学位(Tech) 2015年贾达夫大学电子和电信工程系。 B.Tech完成后,他担任Grunanak理工学院担任访客教师一年多。 2010年,他加入了贾达布尔大学,担任高级研究员。 除了他的研究活动外,他与教程INB部门有联系。 ,贾达夫布尔大学。 他曾在孟加拉国吉大港科技大学电子和电信工程系担任助理教授两年。 目前,他在印度海得拉巴的JB工程技术学院(自治)的JB工程技术学院(自2017年)担任副教授。 他在存档期刊和同行审查的会议上有30多个技术研究论文。 他在Springer和Taylor&Francis有三本章节。 他是Elsevier,Springer和Applied Physics杂志的定期审阅者。 他已经完成了孟加拉国的一个项目。 他是目前正在进行的DST项目的PI,价值460万。 目前,他的研究举措集中在生物电子学,半导体设备,纳米电视模型的仿真,传输现象,单电子和旋转器设备及其在VLSI电路,低功率VLSI设计和机器人中的应用。Haldia技术学院,WBUT和M. Tech的技术学位。分别于2007年和2010年获得Jadavpur大学的学位。 他已经完成了博士学位(Tech) 2015年贾达夫大学电子和电信工程系。 B.Tech完成后,他担任Grunanak理工学院担任访客教师一年多。 2010年,他加入了贾达布尔大学,担任高级研究员。 除了他的研究活动外,他与教程INB部门有联系。 ,贾达夫布尔大学。 他曾在孟加拉国吉大港科技大学电子和电信工程系担任助理教授两年。 目前,他在印度海得拉巴的JB工程技术学院(自治)的JB工程技术学院(自2017年)担任副教授。 他在存档期刊和同行审查的会议上有30多个技术研究论文。 他在Springer和Taylor&Francis有三本章节。 他是Elsevier,Springer和Applied Physics杂志的定期审阅者。 他已经完成了孟加拉国的一个项目。 他是目前正在进行的DST项目的PI,价值460万。 目前,他的研究举措集中在生物电子学,半导体设备,纳米电视模型的仿真,传输现象,单电子和旋转器设备及其在VLSI电路,低功率VLSI设计和机器人中的应用。分别于2007年和2010年获得Jadavpur大学的学位。他已经完成了博士学位(Tech)2015年贾达夫大学电子和电信工程系。B.Tech完成后,他担任Grunanak理工学院担任访客教师一年多。2010年,他加入了贾达布尔大学,担任高级研究员。除了他的研究活动外,他与教程INB部门有联系。,贾达夫布尔大学。 他曾在孟加拉国吉大港科技大学电子和电信工程系担任助理教授两年。 目前,他在印度海得拉巴的JB工程技术学院(自治)的JB工程技术学院(自2017年)担任副教授。 他在存档期刊和同行审查的会议上有30多个技术研究论文。 他在Springer和Taylor&Francis有三本章节。 他是Elsevier,Springer和Applied Physics杂志的定期审阅者。 他已经完成了孟加拉国的一个项目。 他是目前正在进行的DST项目的PI,价值460万。 目前,他的研究举措集中在生物电子学,半导体设备,纳米电视模型的仿真,传输现象,单电子和旋转器设备及其在VLSI电路,低功率VLSI设计和机器人中的应用。,贾达夫布尔大学。他曾在孟加拉国吉大港科技大学电子和电信工程系担任助理教授两年。目前,他在印度海得拉巴的JB工程技术学院(自治)的JB工程技术学院(自2017年)担任副教授。他在存档期刊和同行审查的会议上有30多个技术研究论文。他在Springer和Taylor&Francis有三本章节。他是Elsevier,Springer和Applied Physics杂志的定期审阅者。他已经完成了孟加拉国的一个项目。他是目前正在进行的DST项目的PI,价值460万。目前,他的研究举措集中在生物电子学,半导体设备,纳米电视模型的仿真,传输现象,单电子和旋转器设备及其在VLSI电路,低功率VLSI设计和机器人中的应用。
蛋白质通过化学相互作用介导其功能;建模通常是通过侧链的这些相互作用是蛋白质设计中的重要需求。但是,构建全原子生成模型需要适当的方案来管理结构和序列中编码的蛋白质的共同连续和离散性质。我们描述了蛋白质结构Protpardelle的全部原子扩散模型,该模型立即将所有侧链状态表示为“叠加”状态;定义蛋白质的叠加叠加在样品产生过程中的单个残基类型和构象中。与序列设计方法结合使用时,我们的模型能够编码全原子蛋白质结构和序列。生成的蛋白质在典型的质量,多样性和新颖性指标下具有良好的质量,而Sidechains则重现了天然蛋白质的化学特征和行为。最后,我们探讨了模型以无主链和无旋转器方式进行全原子蛋白设计和脚手架功能基序的潜力。
诺贝尔奖获得者史蒂文·温伯格(Steven Weinberg)在他成功的第二版中,将杰出的物理见解与他的清晰言论的礼物结合了他的清晰言论,为现代Quanmagrigins提供了简洁的介绍。现在包括六个全新的部分,其中涵盖了关键主题,例如刚性旋转器和量子密钥分布,以及整个现有主题的主要添加,此修订版非常适合一年的毕业课程或研究人员的参考。首先回顾了量子力学的历史和Schrödinger方程的经典解决方案,在以现代希尔伯特太空方法开发量子力学之前,温伯格使用他的非凡专业知识来阐明Bloch波和乐队结构,例如Wigner – Wigner – eckart Theorem,魔术数字,魔术,魔术,对称性,一般分散的理论,以及一般分散的理论。问题包括在章节的末端,并提供有关讲师的解决方案,网址为www.cambridge.org/9781107111660。
自旋轨道扭矩对于控制自旋装置至关重要。旋转厅效应在内存和振荡器设备中发现了广泛的应用,从而实现了磁化开关和自动振荡。然而,自旋霍尔效应的有效性受设备的几何特性的约束,这限制了旋转电流的流量和极化方向。另一种自旋轨道耦合现象的自旋交换效果通过提高灵活性在任何所需方向上产生旋转电流来克服这些约束。这是通过将初始旋转电流的方向和极化转换为独特的二次自旋电流来实现的[1]。通过自旋交换生成平面外旋转的最新成功证明了其在垂直磁化系统中的旋转器设备中的有效性[2]。自旋交换不仅可以在具有特定带结构的材料中,而且还可以发生在中心对称材料(例如3D过渡铁磁铁)中,该材料很容易沿磁化方向产生自旋极性电流,使其非常适合自旋交换来源[3]。然而,尚未尝试使用混合电信号阻碍的3D铁磁性交换的定量分析。铁磁层的共振向相邻层提供了极化的旋转,作为自旋交换的主要自旋。具有不同有效磁化的磁性层的共振提供了不同的共振场,从而允许信号分化,如图1(b)所示。通过反旋转大厅效应(ISHE)和异常霍尔效应(AHE)或自旋交换效果,将扩散到其他层的泵送自旋电流转化为具有不同角度依赖性的电荷电流。如图1(c)所示,与PT/CO中的ISHE主导信号不同,PT/CO中的信号在COFEB/TA/COFEB中具有独特的角度依赖性,包括自旋交换效应,验证了这种现象。COFEB/TA/COFEB表现出旋转交换效果,即在Ishe&Ahe中观察到的1/3。本研究中的定量分析提供了每种自旋交换源材料的贡献。自旋交换效果的利用将导致旋转器设备的能源效率和无场操作。
二维(2D)电子系统中的表面等离子体引起了人们对其有希望的轻质应用的极大关注。然而,由于难以在正常的2D材料中同时节省能量和动量,因此表面等离子体的激发,尤其是横向电(TE)表面等离子体。在这里我们表明,从Gigahertz到Terahertz机制的TE表面等离子体可以在混合介电,2D材料和磁体结构中有效地激发和操纵。必需物理学是表面自旋波补充了表面等离子体激发的额外自由度,因此大大增强了2D培养基中的电场。基于广泛使用的磁性材料,例如Yttrium Iron Garnet和Difuluoride,我们进一步表明,等离子体激发在混合系统的反射光谱中表现为可测量的浸入,而浸入位置和浸入深度可以通过在2D层和外部磁性磁场上的电气控制很好地控制。我们的发现应弥合低维物理学,等离子间和旋转的领域,并为整合等离子和旋转器设备的新颖途径打开新的途径。
X射线反射技术可以提供具有原子分辨率精度的表面,接口和薄膜的平面外电子密度纤维。虽然当前的方法需要高表面的平流,但由于表面张力非常高,这对于自然弯曲的表面,尤其是液态金属的挑战。在这里,使用配备有双晶体束向旋转器的同步降低衍射仪,在高度弯曲的液体表面上具有几十微米的光束大小的X射线反射测量。使用标准反射性–2扫描的提议和开发方法成功地用于原位研究熔融铜和熔融铜的裸露表面,该铜和熔融铜被化学蒸气沉积原位生长的石墨烯层覆盖。发现在1400 K处的铜液体表面的粗糙度为1.25 0.10a˚,而石墨烯层的距离与液体表面分离为1.55 0.08a˚,其粗糙度为1.26 0.09a˚。
抽象背景/目的:视野研究对于理解细胞的重音至关重要,但是传统培养系统经常忽略实际植入物的三维(3D)结构,从而导致细胞募集和行为的限制,在很大程度上受重力控制。这项研究的目的是先驱一个新型的3D动态成骨细胞培养系统,用于以更临床和物理学相关的方式评估牙科植入物的生物学能力。材料和方法:在带有垂直定位的牙齿植入物的24孔盘中培养大鼠骨髓衍生的成骨细胞。使用3D旋转器进行控制的旋转,并应用了3个倾斜度。 细胞的附着,增殖和植入物表面上的分化是响应不同表面地形,物理化学特性和局部环境的响应。 结果:在经过测试的旋转速度(0、10、30、50 rpm)中,在30 rpm处观察到最佳成骨细胞附着和增殖。 在30 rpm的旋转速度和旋转速度之间发现线性相关性,在50 rpm下下降。 碱性磷酸酶(ALP)活性和矿化基质形成在新近酸蚀刻的亲水性表面上升高,与它们4周龄的疏水表面相比。 砂植入物显示出较高的ALP活性和基质矿化。 将N-乙酰半胱氨酸添加到培养基中增加了ALP活性和矿化。 结论:在优化的动态条件下,在体外成功附着,增殖和矿物质成骨细胞成功地附着,增殖和矿化。使用3D旋转器进行控制的旋转,并应用了3个倾斜度。细胞的附着,增殖和植入物表面上的分化是响应不同表面地形,物理化学特性和局部环境的响应。结果:在经过测试的旋转速度(0、10、30、50 rpm)中,在30 rpm处观察到最佳成骨细胞附着和增殖。在30 rpm的旋转速度和旋转速度之间发现线性相关性,在50 rpm下下降。碱性磷酸酶(ALP)活性和矿化基质形成在新近酸蚀刻的亲水性表面上升高,与它们4周龄的疏水表面相比。砂植入物显示出较高的ALP活性和基质矿化。将N-乙酰半胱氨酸添加到培养基中增加了ALP活性和矿化。结论:在优化的动态条件下,在体外成功附着,增殖和矿物质成骨细胞成功地附着,增殖和矿化。该系统区分了具有不同表面地形,润湿性和生化调制环境的植入物的生物学能力。这些发现支持开发3D动态牙齿植入物
磁转运(电导对外部磁场的响应)是揭示外来现象背后基本概念的重要工具,并在实现播种机应用方面起着关键作用。磁转运通常对磁场方向敏感。相比之下,很少见到电子传输的效果和各向同性调制,这在诸如全向感应等技术应用中很有用,尤其是对于原始晶体而言。这里提出了一种策略,以实现对电子传导对电子传导的极强调制,而磁场独立于场方向。GDPS是一种具有电阻率各向异性的分层抗铁磁半导体,它支持具有矛盾的各向同性巨大的巨型磁势敏感对磁性方向不敏感的场驱动的绝缘体到金属转变。这种各向同性磁阻起源于GD 3 +基于GD 3 +的半纤维f-Electron系统的接近零自旋 - 轨道耦合的组合效应以及GD原子中强的现场F - D交换耦合。这些结果不仅为具有非凡的磁转运提供了一种新型的材料系统,可为基于抗铁磁铁的超快和有效的旋转器设备提供缺失的块,而且还展示了设计具有高级功能的所需运输特性的磁性材料的关键成分。
摘要:支架是肾小管内预本植物,通过旋转器干预植入小型侵入性,以确保人体导管的通畅,主要是在心血管施用中。在小儿心脏病学中,支架已成为先天性心脏病(CHD)的公认程序,作为胸部手术的替代方法。CHD是指影响心脏在怀孕期间异常发育引起的一系列缺陷。在胎儿寿命期间,额外的分流剂允许建立平行的循环和妊娠生存,而冠心病与外界寿命不兼容,并且在出生后不久就需要进行医疗干预。本评论旨在讨论CHD中支架支架的艺术状况。尽管这些病理学严重程度,但由于病例的限制,该行业的投资仍然存在,并且仍然缺少专用设备。因此,在新生儿中通常以标签的基础利用市售成人支架,而没有对特定解剖结构和所需功能进行任何优化。在本综述中,提供了可用支架的分类,恢复了制造技术,材料和几何方面,以获得目标生物力学性能。分析了胎儿循环后,考虑了不同形式的冠心冠军,收集当前采用的支架,并讨论临床结果以概述理想设备的特征。
2π,其中k是x方向上的波形,n是频带索引。要考虑到自旋轨道的影响,我们将假设ψk,n和u k,n都是二维旋转器。我们将幅度E的电场施加到平行于边缘(即X方向)的方向上,即,汉密尔顿人受到潜在项EE ˆ X的扰动,其中 - e是电子电荷,而位置操作员ˆ x。对于具有锯齿形和胡须边缘(保留山谷数)的石墨烯纳米替宾,坐标(x,y)的作用由单位单元格L和组合索引(M,σ)播放,其中m = 1。。。n表示每个单位单元格中的两个原子水平行,其中σ原子(a或b)中的两个原子行(见图1(a),(c)在主文本中)。请注意,一排可能会错过任何一个sublattice的原子,如图1(c),在每个单元单元的第1行中错过了一个A原子。在显示纳米孔中的密度和电流的结果时,在Y轴上的位置只能解析到行数中。 因此,Y坐标将被离散索引所取代,该索引将采用整数值,以在一行中标记位置,并在行之间标记位置(中途)。在Y轴上的位置只能解析到行数中。因此,Y坐标将被离散索引所取代,该索引将采用整数值,以在一行中标记位置,并在行之间标记位置(中途)。