石墨烯尚未被视为这些应用的理想电极材料。在当代研究中,人们普遍承认,将缺陷引入石墨烯的结晶晶格是一种有效的策略,可以增强这种出色的碳同质同种异体的HET活性。7,8尽管确切的潜在机制仍然是正在进行的侵犯的主题,但通常认为缺陷工程(表示缺陷的精确和定量调节)可能会破坏高度离域的p-互共轭系统。这种破坏反过来导致在费米水平附近的状态(DOS)的局部电子密度增加,从而增强了石墨烯在催化过程中的反应性。9 - 11缺陷工程中的一个著名大道需要增加石墨烯中的内在缺陷,包括边缘站点,空缺,孔和拓扑缺陷。这些内在缺陷因其增加活性位点的密度的潜力而被认可,从而提高了石墨烯的HET活性。12到达这一目标,已经提出了各种策略,包括通过微型加工制造石墨烯纳米纤维13,14和磨球15以及多环状芳族烃的化学合成。16 - 18更重要的是,通过诸如电子束蚀刻,19氧化蚀刻,20和血浆处理等方法,在石墨烯晶格上的空缺或孔的创建,21,22
两性离子表面因其具有抵抗蛋白质、细菌和细胞粘附的倾向而越来越多地被用作防污涂层,并且通常以聚合物系统的形式应用。据报道,强相互作用的小分子两亲分子的自组装可产生用于防污应用的纳米带。合成的两亲分子自发形成具有纳米级横截面的微米长纳米带,并且本质上在其表面上显示出致密的两性离子部分涂层。涂有纳米带的基质表现出浓度依赖性厚度和近乎超亲水性。然后探测这些表面涂层的防污性能,结果表明,与未涂层对照相比,蛋白质吸附、细菌生物膜形成和细胞粘附均显着降低。利用粘性小分子自组装纳米材料进行表面涂层为有效的防污表面提供了一种简便的途径。
重要的是,我们在这项研究中发现,“除了向上别无他法”也适用于缅因州政府和缅因州的非部落公民。从案例来看,在联邦通过自治实现部落自决的政策下,部落经济发展对邻近的非部落社区产生了积极影响,提高了州和地方政府为其公民服务的能力。与任何邻近政府的情况一样,部落和非部落政府之间可能会发生冲突。缅因州以外的总体经验是,能力越来越强的部落政府通过使双方以成熟的合作能力坐到谈判桌上来改善州与部落的关系。与这些有利前景相反的是现状,各方都放弃了经济机会,政府间冲突、诉讼、相互指责和不信任的循环仍在继续。
新的咪唑-5-氮杂化合物的合成5 - (((e)-Benzylidene)-3-((4'-(((Z)-Phenyldiazenyl)) - [1,1,1'-二苯基] -4-4- ylive- 2-乙烯基)-3-乙烯基-3,5-二氢-4 h-imidazol-4--在此工作,并在此工作。α,β-β-不饱和羧酸与硫二酰氯化物作为起始材料的反应,导致(E)-4-苯乙烯-2-氯羟唑-5(4 h) - 一(化合物A3)在两个步骤中通过苯甲酰氨酸和苯二氮的芳族芳族含有苯甲酸盐和芳族的水分,然后在两个步骤中处理了苯甲酸盐和芳族的水中,并在水中含有芳族的水含量和水中的水。耦合反应。 通过FT-IR,1 H-NMR和13 C-NMR光谱法对合成化合物的特征进行了表征。 抗菌和抗氧化活性的研究表明,这些分子中的一些是作为潜在的抗菌和抗氧化剂的。 k e y w o r d sα,β-β-不饱和羧酸与硫二酰氯化物作为起始材料的反应,导致(E)-4-苯乙烯-2-氯羟唑-5(4 h) - 一(化合物A3)在两个步骤中通过苯甲酰氨酸和苯二氮的芳族芳族含有苯甲酸盐和芳族的水分,然后在两个步骤中处理了苯甲酸盐和芳族的水中,并在水中含有芳族的水含量和水中的水。耦合反应。通过FT-IR,1 H-NMR和13 C-NMR光谱法对合成化合物的特征进行了表征。抗菌和抗氧化活性的研究表明,这些分子中的一些是作为潜在的抗菌和抗氧化剂的。k e y w o r d s
微生物可以产生生物表面活性剂,因为它们是增加疏水化合物的生物利用度的关键药物,这可以用作微生物生长的碳源。1因此,产生生物表面活性剂的细菌可以进入疏水相,并代谢多种脂肪液烃和多环芳烃(PAHS)。生产表面活性剂的细菌也发现了许多商业应用,尤其是在修复环境中去除烃污染物和重金属的补救措施。2纯化的细菌表面活性剂已被用于控制食品中的病原体,3作为食品工业中的乳液稳定剂,4用于药物输送,5作为针对植物病原体的有效且环保的生物农药,6和美容工业中。7
我们利用从头算密度泛函理论 (DFT) 研究了 54 个选定原子单层中的挠曲电效应。具体来说,我们考虑了 III 族单硫属化物、过渡金属二硫属化物 (TMD)、IV 族、III-V 族、V 族单层、IV 族二硫属化物、IV 族单硫属化物、过渡金属三硫属化物 (TMT) 和 V 族硫属化物的代表性材料,执行对称性适应的 DFT 模拟,以计算在实际相关的弯曲曲率下沿主方向的横向挠曲电系数。我们发现这些材料表现出线性行为,沿两个主方向具有相似的系数,TMT 的值比石墨烯大五倍。此外,我们发现了挠曲电效应的电子起源,该效应随着单层厚度、弯曲方向的弹性模量和组成原子的极化率之和而增加。挠曲电性 1-8 是半导体/绝缘体共有的机电特性,代表应变梯度和极化之间的双向耦合。与压电性不同,它不限于非中心对称的材料,即不具有反演对称性的晶格结构,与电致伸缩相反,它允许通过反转电场来反转应变,并允许感测额外的
我们利用从头算密度泛函理论 (DFT) 研究了 54 个选定原子单层中的挠曲电效应。具体来说,我们考虑了 III 族单硫属化物、过渡金属二硫属化物 (TMD)、IV 族、III-V 族、V 族单层、IV 族二硫属化物、IV 族单硫属化物、过渡金属三硫属化物 (TMT) 和 V 族硫属化物的代表性材料,执行对称性适应的 DFT 模拟,以计算在实际相关的弯曲曲率下沿主方向的横向挠曲电系数。我们发现这些材料表现出线性行为,沿两个主方向具有相似的系数,TMT 的值比石墨烯大五倍。此外,我们发现了挠曲电效应的电子起源,该效应随着单层厚度、弯曲方向的弹性模量和组成原子的极化率之和而增加。挠曲电性 1-8 是半导体/绝缘体共有的机电特性,代表应变梯度和极化之间的双向耦合。与压电性不同,它不限于非中心对称的材料,即不具有反演对称性的晶格结构,与电致伸缩相反,它允许通过反转电场来反转应变,并允许感测额外的
石化工业的主要工艺之一是蒸汽裂解,通过与蒸汽发生反应,将大分子烃分解成更小、更轻的分子,从而生产乙烯或丙烯等轻质烯烃。这种化学反应将气态或液态重质烃(如乙烷、石脑油)加热到极高的温度,并与管式炉中的过热蒸汽混合,将其转化为较小的分子。该工艺的核心是裂解炉,燃烧器在两个主要部分(对流和辐射)向盘管提供大量能量,外皮管的温度最高。这一基本步骤是生产乙烯(化学工业的重要原料)以及生产聚合物、溶剂、合成纤维的关键
20 世纪 40 年代至 20 世纪 80 年代,纳瓦霍族保留地广泛开采铀矿。虽然纳瓦霍族保留地内不再开采铀矿,但铀污染的遗留问题依然存在。纳瓦霍族保留地内分布着 500 多个废弃铀矿 (AUM),一些房屋是用矿山废料建造的,一些水源中的铀和其他污染物含量过高。20 世纪 90 年代至 21 世纪初,纳瓦霍族保留地废弃矿山土地复垦计划 (AML) 通过关闭矿井开口和掩埋矿山废料来解决了许多 AUM 中的物理危害。美国环境保护署 (EPA) 和纳瓦霍族保留地环境保护署 (NNEPA) 会在发现受污染建筑物和周围土壤对居民构成风险时实施清除行动。
使用浓缩酸可以有助于在许多类型的烃液体中形成油中的乳液。在生产形成中产生的乳液可以提高烃粘度,并降低或阻止碳氢化合物流向生产井的流动。酸非乳化剂用于酸化液体,以防止形成此类乳液。非乳化剂是专门设计的表面活性剂,可通过减少水和油的界面处的表面张力来防止形成油中的乳液。非乳化剂是配制的,以使生产地层水湿,以使碳氢化合物流体自由流到井眼中。在实验室或现场中,可以进行API RP-42测试,以选择特定碳氢化合物乳液的最佳非乳化剂。