扩散过程渗透到人工智能的众多领域,抽象地模拟了网络中信息交换的动态,这些信息交换通常是易变的。一个核心问题是信息在网络中保留多长时间,即生存时间。对于常见的 SIS 过程,对于各种参数,预期生存时间至少是星图上网络规模的超多项式。相比之下,引入临时免疫的 SIRS 过程的预期生存时间在星图上始终最多为多项式,并且仅对于更密集的网络(例如扩展器)才为超多项式。然而,这一结果依赖于完全的临时免疫,而这在实际过程中并不总是存在的。我们引入了 cSIRS 过程,它结合了逐渐下降的免疫力,使得每个时间点的预期免疫力与 SIRS 过程的预期免疫力相同。我们在星图和扩展器上严格研究了 cSIRS 过程的生存时间,并表明其预期生存时间与没有免疫力的 SIS 过程非常相似。这表明,免疫力逐渐下降就等于没有免疫力。
没有免费的午餐定理用于监督学习的情况,没有学习者可以解决所有问题,或者所有学习者在学习问题上的均匀分布上平均达到完全相同的精度。因此,这些定理通常被引用,以支持个人问题需要特别量身定制的电感偏见。几乎所有均匀采样的数据集具有很高的复杂性,但现实世界中的可能性不成比例地生成低复杂性数据,我们认为神经网络模型具有使用Kol-Mogorov复杂性正式化的相同偏好。值得注意的是,我们表明,为特定域而设计的Ar奇数(例如计算机视觉)可以在看似无关的域上压缩数据集。我们的实验表明,预先训练甚至随机初始化的语言模型更喜欢产生低复杂性序列。虽然没有免费的午餐定理似乎表明单个概率需要专业的学习者,但我们解释了通常需要进行人工干预的任务,例如当稀缺或大量数据可以自动化为单个学习算法时选择适当尺寸的模型。这些观察结果证明了通过越来越小的机器学习模型集合统一看似不同的问题的深入学习的趋势。
您的自付费用取决于您的提供商的网络状态。本计划的网络内提供商数量有限。如果您访问的提供商或地点不在本计划的网络内,您将支付更多的护理费用,并且与您的护理相关的费用将不会计入您的网络内费用分摊(例如,网络内免赔额和自付费用最高限额)。请务必查明您的医生是否在本计划的网络内(请在本文档顶部记下网络名称)。要检查状态,请使用 bluecrossmnonline.com 上的“查找医生”网络工具。