钙钛矿表面很少是化学计量的,通常是排便的。3个钙钛矿表面的缺陷可能会引起显着的非放射电荷重组,并使太阳能电池性能恶化。3 - 7尤其是在最新的太阳能电池中,与散装或晶界相比,钙钛矿和电荷传输层之间的界面的非放射性重组是主要的。4因此,界面缺陷的钝化对于实现高效率PSC是关键。为此,已经报道了许多钝化方法,例如,通过添加小分子,聚合物和无机化合物的层间或掺入宽频段间隙2D perovskites。8 - 11尽管对太阳能电池效率有所改善,但仍然关注这些方法的可观性。最近,宽频段氧化物的原子层沉积(ALD)(例如al 2 o 3)已成为一种有前途的钝化钙钛矿表面的有希望的策略。12 ALD是一种可伸缩的蒸气 - 相薄 - LM沉积技术,它依赖于序列的交替自限制表面反应,它以在具有原子厚度和 lm厚度控制的表面上产生高度均匀的连形薄lms而闻名。
摘要:瞬态电子系统代表一种新兴技术,其特点是能够在规定的运行时间后,通过设计的化学或物理过程,以受控的速率或触发时间完全或部分溶解、分解或以其他方式消失。本综述重点介绍了材料化学领域的最新进展,这些进展为瞬态电子学的一个子类——生物可吸收电子学奠定了基础,该子类的特点是能够在生物环境中重新吸收(或等效地吸收)。主要用例是设计用于插入人体的系统,以在与自然生物过程一致的时间范围内提供传感和/或治疗功能。生物吸收机制可以无害地消除设备及其对患者的相关负荷和风险,而无需进行二次移除手术。核心内容侧重于使能电子材料的化学性质,涵盖有机和无机化合物、杂化物和复合材料,以及它们在生物环境中的化学反应机制。随后的讨论重点介绍了这些材料在生物可吸收电子元件、传感器、电源以及使用专门的制造和组装方法形成的集成诊断和治疗系统中的应用。结论部分总结了未来研究的机会。
生物腐蚀,也称为微生物学影响的腐蚀(MIC)是通过微生物引起的金属结构的降解,可以通过直接在金属表面上释放一组电化学反应来释放一组电化学反应,从而释放一组电化学反应。各种微生物能够引起这种类型的腐蚀,包括细菌,古细菌和真菌[1]。这些微生物通过这些微生物形成生物膜会增强微生物细胞对金属表面的粘附,并增加在该环境中不良条件下生存的机会。生物膜由不同种类的微生物形成,它们含有水,细胞外聚合物(EPS)和某些无机化合物[2]。MIC的过程受到Agarry等人在金属和环境之间的界面上某些物理化学参数的改变[3]。[2]。生物膜的产生对于通过增加疏水性和电荷来影响界面至关重要[4]。研究表明,管道或其他金属容器中的水增加了这些微生物的存在的机会[5,6]。这些微生物在石油行业的金属表面上的生长会导致石油产品的生物污染[7]。负责引起生物腐蚀的细菌的常见类型包括产生酸性细菌(APB),硫酸盐还原细菌(SRB),硫氧化细菌,铁细菌(氧化剂和还原剂)以及锰氧化细菌。但是,产生酸的细菌和其他包括细菌分泌有机酸,甲烷作和生物膜生产者[7,8]。
摘要:法医和安全部门一直需要快速、现场、易于使用、非侵入式地对爆炸前犯罪现场的完整高能材料进行化学鉴定。仪器小型化、数字数据的无线传输和云存储以及多变量数据分析方面的最新技术进步为近红外 (NIR) 光谱在法医科学中的应用创造了新的、非常有前景的选择。这项研究表明,除了滥用药物外,具有多变量数据分析功能的便携式 NIR 光谱也为识别完整的高能材料和混合物提供了绝佳的机会。NIR 能够表征法医爆炸物调查中涉及的各种化学物质,包括有机化合物和无机化合物。对实际法医案件样本的 NIR 表征令人信服地表明,该技术可以处理法医爆炸物调查中遇到的化学多样性。 1350–2550 nm NIR 反射光谱中包含的详细化学信息可用于正确识别给定类别的含能材料中的化合物,包括硝基芳族化合物、硝基胺、硝酸酯和过氧化物。此外,还可详细表征含能材料混合物,例如含有 PETN(季戊四醇四硝酸酯)和 RDX(三硝基三嗪烷)的塑料配方。所给出的结果表明,含能化合物的 NIR 光谱
摘要材料信息学的萌芽领域与向人工智能转变以发现新的固态化合物。晶体学和计算数据存储库的稳定扩展为开发能够预测物理特性的数据驱动模型的阶段奠定了基础。机器学习方法,特别是已经显示出通过筛选晶体结构数据库识别具有与能量相关应用的近乎理想特性的材料的能力。但是,数据引导的发现的示例是全新的,从未报告过的化合物的示例。确定在合成中是否可以访问未知化合物的关键步骤是获得形成能并构建相关的凸壳。幸运的是,通过密度功能理论(DFT)数据存储库已广泛获得此信息,以至于它们可用于开发机器学习模型。在本综述中,我们讨论了开发能够预测形成能量的机器学习模型的特定设计选择,包括控制材料稳定性的热力学数量。我们研究了文献中介绍的几种模型,这些模型涵盖了各种可能的架构和特征集,并发现它们已经成功地发现了新的DFT稳定化合物和指导材料合成。为了扩展对合成固态化学家的机器学习模型的访问,我们还提出了Matlearn。此基于Web的应用程序旨在指导对可能包含热力学无机化合物的区域的组成图探索。最后,我们讨论了机器学习的地层能量的未来,并突出了提高预测能力的机会,从而综合了新的能源相关材料。
随着人口和IT工业化的巨大增长[1-3]导致不同类型的污染严重影响了不同的生态系统。目前,由于世界各地产生的严重问题,水体中的重金属污染是日益增长的关注点。这些无机污染物影响表面和地下水[4]直接影响水生生态系统和人类健康。具有生物积累[5-7]的能力,会产生不同类型的不良反应,并可能导致死亡。这种类型的污染主要与采矿公司,石油精炼,纺织品,农药,油漆,颜料等[8,9]相关。一些作者[8]提到,与有机化合物不同,这些化合物在任何程度上都不可生物降解,从而使它们更加危险。由于对环境和人类健康的重大威胁[10],此问题不仅发生在不同的水体中,而且包括所有矩阵:空气污染显着影响土壤和水的质量[11]。在土壤污染的情况下,这是由于不同类型的污染物的不加选择的释放而产生的,其中包括碳氢化合物,金属,农药等。尽管这些重金属自然存在于地壳中,但与这些无机化合物有关的每种人类活动都导致了强大的生化和生物地球化学不平衡[3,12,13]。因此,在水污染的情况下,由于直接因素(例如从工业家的出院)以及诸如降雨或降雨径流等间接因素引起的[10、11、14、15]。为了治疗此问题,已经提出了许多清除方法,包括化学沉淀[16],电透析,MOF [17],浮选[18],
过渡到圣彼得堡大学音乐学院的钢琴研究。经过多年的学术挫败感,他加入了圣彼得堡大学的实验室。在那里他追求自然科学,并最终获得了化学和植物学的硕士学位。(1)虽然微生物学不是科学家的新概念,但他们对微生物的代谢多样性及其与地球的关系知之甚少。Winogradsky的突破之一是发现自养细菌。(2)通过他在斯特拉斯堡大学的安东·德巴里(Anton Debary)实验室的工作,他确定了一个非凡的微生物群体,能够利用无机化合物作为能源。Winogradsky见证了乞g和硫酸细胞中硫颗粒的外观和消失,他将这些生物称为“ Chemolithotrophs”。这些化学物质可以驱动元素能量周期,例如氮和硫。(1)这一开创性的发现挑战了所有生命仅依赖于光和有机化合物来维持生存的普遍观念。在1888年,Winogradsky在Debary实验室的努力即将结束,现在是时候开始他职业生涯的下一阶段了。氮在微生物生命周期中的作用。Winogradsky在苏黎世大学的卫生研究所,证实了英国化学家罗伯特·沃灵顿(Robert Warington)关于细菌对无机氨和亚硝酸盐氧化转化的理论。(1)Winogradsky鉴定了多个硝化细菌属,其中一些是硝化细菌,硝基杆菌,硝基瘤和硝基球菌。(3)当他于1899年回到圣彼得堡时,Winogradsky确定了强制性的Anaerobe梭子座巴氏菌,这证明某些生物可以修复大气氮。
随着世界人口不断增长,农业对未来粮食供应的需求将成为农业界面临的最大挑战之一。换句话说,农业对于实现粮食安全至关重要。化肥和农药已成为植物生产的必需品,以满足人口的快速增长以及随之而来的营养需求的增加。然而,这些肥料/农药的滥用和滥用造成了许多问题,并对当今许多国家的农业生产产生了负面影响。此外,由于工业和农业的快速发展以及人口增长带来的人类压力破坏了自然生态系统,化肥、农药和重金属造成的土壤污染对环境和粮食安全构成了威胁。重金属污染也对生态系统和人类构成许多风险,影响食物链的安全、食品质量和利用土地进行农业生产的能力,进而影响粮食安全。为了应对这一挑战,需要投入大量精力关注土壤生物系统和整个农业生态系统,以便更好地了解控制农业用地可持续性的土壤、植物和微生物之间的复杂过程和相互作用。植物相关微生物在溶解矿物基质方面起着关键作用,有助于从主要矿物质中释放关键营养物质,并使土壤中提供必需的植物元素,从而提高作物生产力(Etesami 和 Adl,2020 年)。此外,这些有益微生物还参与生态系统中有机和无机化合物的降解和/或解毒(生物修复)(Etesami,2018 年)。因此,将这种植物微生物组引入农业是一种有效的方法,因为它具有长期和环境有利的机制,可以促进植物生长并保持植物健康和质量。近年来,低成本和环境友好的农业实践受到越来越多的关注。
无机化合物。CO3:了解核化学的重要性,其相关反应及其应用。化学键合价键理论,杂交理论,VSEPR理论,分子轨道理论,轨道的波浪机械描述,MOS在HOMO和异核性核分子中的应用,分子轨道的对称性,分子轨道的对称性,金属中键合的理论。酸碱概念介绍 - 布朗斯特 - 低点定义,溶剂系统定义,勒克斯 - 河 - 液体定义,刘易斯定义,硬酸和碱基概念(HSAB),硬,边框线以及软酸和基础的分类。Main Group Chemistry-General discussion on the properties of main group elements, boron cage compounds, structure and bonding in polyhedral boranes, carboranes and metalloboranes, styx notation, Wade's rule, electron count, synthesis of polyhedral boranes and carboranes, silicones, silicates, boron nitride, borazines and phosphazenes, hydrides,硝基元(N,P),墨西哥蛋白酶(S,SE&TE)的氧化物和氧气,卤素,Xenon化合物,假卤素和外Halagen化合物,碳的同种异体,合成和反应性的硅和磷的无机聚合物的合成和反应性。还原电势延迟和霜图。内部过渡金属 - 对灯笼和肌动剂的介绍,灯笼/肌动剂的位置,包括电子结构和氧化态,兰烷基和actinide收缩,肌动蛋白假设,光谱,兰特烷基的光谱和磁性的物理特性,灯笼乙酰胺复合物的应用,transactacticinide Elements。参考:核化学引入,放射性和测量,放射性序列,半衰期,核衰减,伯特的核过程符号,核反应的类型,核裂变。
[*注:3901/3902/3903 中的任意一门核心课程] CHE-NEIST-2-3901*(核心课程)(任意一门)高级物理化学:2-0-0-2 热力学和化学动力学、量子力学、原子结构和光谱、双原子中的化学键、群论的化学应用、胶体和表面科学、表面活性剂、界面和界面特性、电化学。 CHE-NEIST-2-3902* (核心) (任意一门) 高级无机化学:2-0-0-2 无机化合物的结构与键合、配位化合物化学、化学与群论中的对称性、主群化学、有机金属化学、过渡金属化合物的电子光谱、磁化学、金属簇化合物、无机反应机理、金属配合物中的电子转移反应、生物无机化学(金属酶、作为氧载体的金属配合物、光合作用)、药物化学中的金属配合物、无机配合物催化作用。 CHE-NEIST-2-3903* (核心) (任意一门) 高级有机化学:2-0-0-2 立体化学、反应机理、CC 和 CX 键形成、逆合成分析、光化学、周环反应、反应中间体、不对称合成方法及其在全合成中的应用、氧化还原反应、有机催化、复分解反应。CHE-NEIST-2-3904 (选修) 高级分析化学:2-0-0-2 分析仪器、信号和噪声、光学分析方法概述:光学仪器组件、基于吸收、发射和散射的原子和分子光谱、电分析技术(基础电化学、伏安法、电位法)、分析分离和色谱法简介、GC、LC、质谱、电迁移技术、联用技术、检测器、石油精炼分析工具。 CHE-NEIST-2-3905(选修)高级有机金属化学:2-0-0-2 基础知识、18 价电子规则;使用分子轨道理论进行有机金属配合物的结构和键合。σ-供体配体: