在饮用水生产过程中使用快速砂过滤(RSF),用于去除颗粒,可能有害的微生物,有机物质和无机化合物,例如铁,锰,铵和甲烷。但是,RSF也可用于去除某些有机微污染物(OPM)。在这项研究中,可以通过生物增强来刺激填充全尺度RSF的沙子的柱子中的拆卸(即用另一个RSF的沙子接种RSF和/或生物刺激(即添加刺激微生物生长的营养素,维生素和微量元素)。结果表明,柱中的PFOA,卡马西平,1-H苯并二唑,苯并二氮酸酯和二氨二醇的去除量很低(<20%)。普萘洛尔和双氯芬酸的去除率更高(50 - 60%),可能通过吸附过程发生普萘洛尔去除,而对于双氯芬酸,尚不清楚去除是否是物理化学和生物学培训的组合。此外,生物学和生物刺激导致38天后加巴喷蛋白和美托洛尔的99%去除,孵育52天后去除99%。没有生物刺激的生物仪柱显示52天后加巴喷丁和美托洛尔的去除率为99%,在80天后进行了Acesulfame。相比之下,非生物仪的柱未去除加巴喷丁,去除<40%的美托洛尔,仅在孵育80天后才显示出99%的丙硫酸含量。去除这些OMP与铵氧化和氨氧化细菌的绝对丰度负相关。16S rRNA基因测序表明,丙硫酸含量,加巴喷丁和美托洛尔的抗粉化与特定细菌属的相对丰度呈正相关,这些属的物种含有异养和有氧或有氧或硝化的代谢。这些结果表明,RSF的生物提升可以成功地去除,在这种情况下,生物刺激可以加速这种去除。
通信[4] 环境监测[5] 以及可穿戴和神经形态计算[6]。这也将对物联网 (IoT) 产生影响,在物联网中,智能对象通过无线连接与环境和人体进行交互。[7] 由柔性材料制成的高性能电子设备可以在高速通信、高效图像传感等方面增加新的功能。[4c,8] 例如,如果单个光电探测器 (PD) 设备可以在宽光谱下以低功耗和低延迟工作,则可以显著提高无线通信的传输速率、传输容量和效率。此外,单个 PD 可以满足对宽光谱开关 [9] 或存储器存储 [10] 的需求。然而,到目前为止的研究主要集中于在特定波长(即紫外线 [1b,10,11] 可见光 [12] 或近红外 [13] 光谱)下高性能柔性 PD 的开发和特性描述。近来,很少有人尝试开发超快和可共形宽带光电探测器件。[8b,14] 其中,基于二维材料和钙钛矿的异质结构已显示出扩展光电探测器件工作波长的潜力。[14] 这是由于它们具有直接带隙和大吸收系数。[15] 具体而言,由于钙钛矿可溶液加工且制造成本低廉,因此在光电应用方面引起了更多关注。然而,由于迁移率低(≈1-10 cm 2 Vs)[16] 和稳定性差,[17] 光电探测器件的性能指标(例如响应度 [ R ] 和特定探测率 [D*])一般。环境条件下稳定性差的原因是水和氧分子的吸附,这大大加速了钙钛矿感光层的降解。 [15a] 人们正在努力通过不同的封装方式来提高钙钛矿基器件的稳定性,但低固有迁移率仍将是一个挑战。因此,人们仍在努力开发下一代具有宽光谱灵敏度和稳健制造路线的柔性高性能 PD。在上述背景下,砷化镓 (GaAs) 等无机化合物半导体的纳米结构和薄膜已显示出巨大的光电潜力
药物化学-II(无机)1。药物制剂中杂质的发生2。对以下药物无机化合物的系统研究,参考其制剂,性质,对身份和纯度的测试,药物用途和印度药物(IS)的测定方法(IP)。3。IA组:钠和钾化合物4。 IIIA组和IIIB组:硼和铝化合物组IVA和IVB:膨润土,轻质和重的高岭土和高岭土。 5。 VA组和VB组:氮,锑和二抗化合物6。 群体氛围:硫,硒化合物7。 组VIIA和VIIB:氢,氧和卤素化合物8。 组VIII:铁化合物9。 研究主要的和额外的细胞电解质,必不可少的和痕量元素及其生理作用。 10。 从以下主题中的药物无机化学中选定的案例研究:a)锂的生物医学用途b)铂化合物在医学中的应用c)金化合物作为治疗剂D)丹氏菌,钛和包胶在医学中的含素化合物11。。 金属化合物作为MRI的对比剂和放射性化合物的药用应用。IA组:钠和钾化合物4。IIIA组和IIIB组:硼和铝化合物组IVA和IVB:膨润土,轻质和重的高岭土和高岭土。5。VA组和VB组:氮,锑和二抗化合物6。群体氛围:硫,硒化合物7。组VIIA和VIIB:氢,氧和卤素化合物8。组VIII:铁化合物9。研究主要的和额外的细胞电解质,必不可少的和痕量元素及其生理作用。10。从以下主题中的药物无机化学中选定的案例研究:a)锂的生物医学用途b)铂化合物在医学中的应用c)金化合物作为治疗剂D)丹氏菌,钛和包胶在医学中的含素化合物11。金属化合物作为MRI的对比剂和放射性化合物的药用应用。
Chen 400化学过程合成和设计3.0:3 Cr。e本课程介绍了所有化学过程和操作所共有的核心技术技能和专业职责。该课程还涵盖了过程综合,过程流和图,化学产品设计,过程热力学,化学过程反应,过程传质,传热和流体流,经济有效性和操作安全。Chen 404高级化学反应堆设计3.0:3 Cr。e本课程介绍了对单个反应器系统和多个反应器系统的性能方程的解释。课程主题包括:理想反应堆的设计以及与理想性,多种化学反应,稳态和不稳定状态的操作,反应堆的优化,收集和分析速率法律数据和生物反应器的分析。本课程涵盖了催化科学,催化剂特性,制备和表征,催化反应器设计和催化剂失活的基础。该部分之后是对最重要的工业催化过程的概述:氢产生和合成气体反应,有机化合物的氢化和脱氢,以及有机和无机化合物的氧化。Chen 412工业催化过程3.0:3 Cr。 e本课程涵盖了催化科学的基础;催化剂特性,制备和表征,催化反应器设计和催化剂停用。 Chen 413高级传输现象3.0:3 Cr。 e本课程涵盖了动量,能量和质量运输的基本理论。Chen 412工业催化过程3.0:3 Cr。e本课程涵盖了催化科学的基础;催化剂特性,制备和表征,催化反应器设计和催化剂停用。Chen 413高级传输现象3.0:3 Cr。e本课程涵盖了动量,能量和质量运输的基本理论。该部分之后是对最重要的工业催化过程的概述:氢产生和合成气体反应(Fischer-Tropsch合成),有机化合物的氢化和脱氢,有机和无机化合物的氧化。壳的动量,热量和质量平衡以及变化的方程是确定层流的速度,温度和浓度分布的。粘度,导热率和质量扩散率也被涵盖,以及摩擦因子和宏观平衡。Chen 416化学工程优化3.0:3 Cr。 e本课程介绍了优化方法在热力学,单元操作,分离过程,能量设计和工业实践中优化的重要化学工程问题上的应用。 本课程包括连续,线性和非线性以及混合整数线性编程问题。 该课程强调问题定义,模型公式和解决方案分析,并提供有关现有算法和软件的足够详细信息,以解决问题。 Chen 418聚合物和聚合物工程3.0:3 Cr。 e本课程对聚合物及其商业应用的合成有很好的了解。 这些材料所具有的重要特性,包括它们的分子,物理,化学,热,机械和电特性。 还将涵盖塑料的形成技术(压缩成型,注射成型…)和导致聚合物降解的不同参数。 Chen 420食品工艺工程3.0:3 Cr。Chen 416化学工程优化3.0:3 Cr。e本课程介绍了优化方法在热力学,单元操作,分离过程,能量设计和工业实践中优化的重要化学工程问题上的应用。本课程包括连续,线性和非线性以及混合整数线性编程问题。该课程强调问题定义,模型公式和解决方案分析,并提供有关现有算法和软件的足够详细信息,以解决问题。Chen 418聚合物和聚合物工程3.0:3 Cr。 e本课程对聚合物及其商业应用的合成有很好的了解。 这些材料所具有的重要特性,包括它们的分子,物理,化学,热,机械和电特性。 还将涵盖塑料的形成技术(压缩成型,注射成型…)和导致聚合物降解的不同参数。 Chen 420食品工艺工程3.0:3 Cr。Chen 418聚合物和聚合物工程3.0:3 Cr。e本课程对聚合物及其商业应用的合成有很好的了解。这些材料所具有的重要特性,包括它们的分子,物理,化学,热,机械和电特性。还将涵盖塑料的形成技术(压缩成型,注射成型…)和导致聚合物降解的不同参数。Chen 420食品工艺工程3.0:3 Cr。Chen 420食品工艺工程3.0:3 Cr。e本课程提供了对各种供暖,冷却,冷冻,干燥和食物结晶的各种方法和工程原理的先进知识和理解的概念;它涵盖了食物中的水关系以及加工过程中物理化学变化的动力学。
我们发现更好的材料的速度对碳捕获,半导体设计和能量存储等领域的技术创新速度产生了重大影响[1-3]。传统上,大多数材料是通过实验和人类直觉发现的,限制了可以测试的候选者数量,并导致长时间迭代周期。多亏了高通量筛选[13],开放材料数据库[14-17],基于机器学习的财产预测者[18,19]和机器学习力场(MLFFS)[20,21],已经可以筛选成千上万的材料来识别有希望的候选者[22,23]。但是,基于筛查的方法仍受到已知材料数量的限制。以前未知的Crys-talline材料的最大探索是在10 6-10 7材料[21,23 - 25]的订单中,这仅是潜在稳定的无机化合物数量的一小部分[26]。此外,这些方法无法有效地转向具有目标特性的材料。鉴于这些局限性,对伴侣的逆设计引起了极大的兴趣[27,28]。逆设计的目的是直接生成满足目标属性约束的材料结构,例如,通过生成模型[4,8,11],Evolution-Ary算法[29]和增强学习[30]。生成模型很有希望,因为它们可以有效地探索新的结构,并可以灵活地适应不同的下游任务。1)。2)。MatterGen的广泛条件功能然而,根据密度功能理论(DFT)计算[4、5、31]的当前生成模型通常无法产生稳定的材料,受到元素的狭窄子集的限制[7,9],并且只能优化非常有限的属性集,主要是形成能[4,5,5,5,8,11,11,11,31,32]。在这项研究中,我们提出了Mattergen,这是一种基于扩散的生成模型,该模型在周期表中产生稳定,多样的无机材料,并且可以通过针对逆材料设计的各种下游任务进行微调(图为了实现这一目标,我们引入了一个扩散过程,该过程通过渐变的原子类型,坐标和周期性晶格来生成晶体结构。我们进一步引入适配器模块,以对所需的化学组成,对称性和标量性质约束(如磁密度)进行微调。与以前的材料的先前状态生成模型相比,Mattergen的稳定,独特和新颖(S.U.N.)材料,并生成在DFT局部能量最小的距离其地面结构的10倍以上的结构(图。
•朝着局部关注和流动匹配风格的校正的长期推出:额叶聚合PDES中的一个例子。Pengfei Cai,Sulin Liu,Qibang Liu,Philippe Geubelle,Rafael Gomez-Bombarelli。(2024)。在ML关于物理科学的ML的Neurips 2024研讨会上介绍。预印本。•使用可区分的模拟学习额叶聚合PDE的治疗动力学。Pengfei Cai,Qibang Liu,Philippe Geubelle,Rafael Gomez-Bombarelli。(2024)。ICML 2024 AI科学研讨会;关于数据驱动和可区分模拟,替代物和求解器的神经研讨会。预印本。•基于额叶聚合制造中形态学模式设计的单变量变异自动编码器。Qibang Liu,Pengfei Cai,Diab Abueidda,Seid Koric,Rafael Gomez-Bombarelli,Philippe Geubelle。(2024)。提交:应用机制和工程中的计算机方法。预印本。•具有准确的混合功能的无机化合物的计算的拉曼光谱数据库。Yuheng Li,Damien K. J. Lee,Pengfei Cai,Ziyi Zhang,Prashun Gorai,Pieremanuele Canepa。 (2024)。 科学数据。 纸链接。 •从“无特征”光吸收光谱中鉴定化学成分:机器学习预测和实验验证。 Tiankai Chen*,Jiali Li*,Pengfei Cai,Qiaofeng Yao,Zekun Ren,Yixin Zhu,Saif Khan,Jianping Xie,Xiaonan Wang。 (2023)。 纳米研究。 纸链接。 (2022)。Yuheng Li,Damien K. J. Lee,Pengfei Cai,Ziyi Zhang,Prashun Gorai,Pieremanuele Canepa。(2024)。科学数据。纸链接。•从“无特征”光吸收光谱中鉴定化学成分:机器学习预测和实验验证。Tiankai Chen*,Jiali Li*,Pengfei Cai,Qiaofeng Yao,Zekun Ren,Yixin Zhu,Saif Khan,Jianping Xie,Xiaonan Wang。(2023)。纳米研究。纸链接。(2022)。•通过第一原则理解和机器学习加速了近红外II分子荧光团的设计。Shidang Xu*,Pengfei Cai*,Jiali Li,Xianhe Zhang,Xianglong Liu,Xiaonan Wang,bin liu。ChemRXIV预印本(实验验证正在进行)。预印本。•聚集时机器学习辅助准确预测分子光学性能。Shidang Xu*,小刘*,Pengfei Cai,Jiali Li,Xiaonan Wang,bin liu。(2022)。高级科学。纸链接。•通过贝叶斯搜索进行第一原则模拟的贝叶斯搜索自我提出的光敏剂发现系统。Shidang Xu*,Jiali li*,Pengfei Cai,小刘,本·刘,小王。(2021)。美国化学学会杂志。纸链接。
北极陆地生态系统目前存储在地球高纬度地区的最大碳。在过去30年中,这些区域的温度水平的上升速度是全球平均水平的两倍,为每十年0.6℃(Cohen等,2014; Schuur等,2015)。这是一种强大的现象,称为北极扩增(Fengmin等,2019)。土壤微生物在将碳化合物转化为有机或无机化合物中起着重要作用,由于变暖,它们的代谢率提高。当微生物分解有机碳时,它们会释放温室气体(GHG),例如二氧化碳(CO 2),一氧化二氮(N 2 O)和甲烷(CH 4),导致全球气候变化(Mehmood等人,2020年,2020年; Marushchak等人,2021年)。在过去的800,000年中,大气二氧化碳,N2O和CH4的水平显着增加。CO 2的目前水平为390.5份百万分之390.5份,n 2 O的零件为390.5份(ppb),CH 4分别为1,803.2 ppb,这些水平分别为40、20、20和150%,比工业时代之前(Tian et et an e an and an an and an and and an and and and and and and and and and and and and and and and and and and and and and and。ch 4,仅次于CO 2之后的第二大最重要的温室气体,占自工业前时代以来变暖剂的人为辐射强迫的20%。此外,CH 4的温室作用是100年内CO 2的28倍(Tian等,2016; Ganesan等,2019; Hui等,2020)。在2000年至2017年之间的生物地球化学模型和大气反转估计,CH 4排放量为15至50 tg/yr(Saunois等,2016,2020)。在2000年至2017年之间的生物地球化学模型和大气反转估计,CH 4排放量为15至50 tg/yr(Saunois等,2016,2020)。由于北极扩增,全球气候变化将导致北极土壤变暖和CH 4排放。然而,尚未发现变暖对CH 4释放的影响,从而导致气候变化。微生物代谢过程长期以来一直是对气候变化的关键驱动因素和反应者(Singh等,2010)。根据研究发现,不同的土壤微生物通过与微生物组成相关的不同代谢途径产生温室气体,从而提高了对温室气体排放的理解。例如,大多数土壤微生物通过分解和异养呼吸对CO 2排放产生了巨大贡献(Watts等,2021)。类似于CO 2排放,生物CH 4的排放受土壤微生物甲烷生成和CH 4氧化的控制,来自土壤,湖泊和其他陆地陆地,尤其是北极土壤(Nazaries等,2013; Tveit et al。微生物甲烷生成是一组厌氧甲烷古细菌进行的过程(Song等,2021)。虽然其他微生物可以分解CH 4,从而减少CH 4向大气中的释放,但微生物甲烷发生对全球CH 4排放造成了很大的贡献,并且了解其对变暖时间的反应至关重要,这对于预测有效的温室气体和气候变化之间的反馈(Lee等人,2012年; Chen等,2020年)。此外,预计在按年来衡量的长期变暖的情况下,微生物组成将发生变化(Deslippe等,2012; Pold等,2021; Zosso等,2021; Rijkers等,2022; Zhou等,2023)。同时,生物CH 4排放也是由于长期微生物发酵而变暖引起的(Altshuler等,2019; Hui等,2020; Zhang等,2021)。但是,气候变化是一个过程
10级科学教学大纲分为四个主要主题:材料,生活世界,事物的工作方式以及自然现象和资源。这些也可以分别归类为化学,生物学,物理学和环境科学。NCERT解决方案10级科学的目的是通过详细解释关键概念来提供对每一章的全面理解。通过使用这些解决方案,学生可以在考试中提高自己的痕迹,并保持领先地位。时间管理在准备考试时至关重要。学生应为每个主题分配足够的时间,更多地关注他们弱的领域。NCERT解决方案将有助于确定这些弱点,并使学生能够相应地集中精力。在进行解决方案之前,必须彻底了解章节概念。10级科学教学大纲分为四个单元。单元涵盖五章:化学反应和方程,酸,碱,盐,金属和非金属,碳及其化合物以及元素分类。单元第二章由四章组成,分别是人类生活过程,从事控制和协调活动的身体部位,单细胞和多细胞生物的繁殖以及遗传模式。第三单元涉及“事物的工作原理”,涵盖了诸如光现象,人眼,电力,电路,电阻,电流的磁效应和应用等主题。第1章介绍了10类科学的NCERT解决方案中的化学反应和方程。第四个单元的重点是自然资源,包括传统和非规定的能源,生态系统,食物链和由人类活动引起的环境退化。通过遵循这些单位并彻底理解这些概念,学生可以在10级科学考试中表现出色,并为未来的研究奠定坚实的基础。本章向学生介绍化学变化的指标,例如物理状态,颜色,温度和气体演化的变化。这些指标是通过实验示例来解释的。也涵盖了化学方程式的写作和平衡,强调了它们对化学反应的象征性表示和质量保护定律。通过合适的实例和化学方程讨论了各种类型的化学反应,例如组合,分解,置换,双重分解,放热,吸热和氧化还原反应。第2章侧重于酸,碱和盐。酸被定义为变成蓝色石榴石并具有酸味的物质,当溶解在水中时会产生H+离子。碱被描述为苦味的物质,变成红色石碑蓝色,在水溶液中产生OHION。强酸完全分离为H+离子,而强碱会完全解离形成OH离子。讨论了与酸接触时的甲基橙和嗅觉指标,例如丁香的消失气味。引入了pH量表,范围从0(高度酸性)到14(高碱性),表明溶液是酸性,碱性还是中性。本章还探讨了产生盐的酸与碱(中和反应)之间的反应,这些盐可能是中性,酸性或基本的,具体取决于用于形成它们的酸或碱的强度。氯 - 阿尔卡利工艺使用盐溶液,形成化学物质,例如漂白粉,洗手苏打,小苏打,巴黎石膏。第3章讨论金属和非金属的物理特性,例如熔点,延展性和锻造性。金属是根据这些特性而区分的,但是尽管非金属是碘的光泽外观,例如碘的光泽外观。分类基于化学特性。与氧,水,酸和其他金属盐的金属的化学反应进行了讨论,重点是反应性系列。金属氧化物具有基本的性质,但有些可以既是酸性又可以是碱性的,称为两性氧化物。离子键,从而在正带和负电荷的离子之间产生了强烈的吸引力。使用Bohr模型和刘易斯结构来解释键的形成。金属提取涉及去除杂质,根据金属反应性加工以及通过电解或其他方法进行精炼。在天然状态下发现了较高的反应金属等反应性金属,而较低的反应性序列需要处理。使用诸如上油,油脂,电镀或合金等方法,可保护萃取的金属免受腐蚀。第10级科学的NCERT解决方案第4章侧重于碳,碳是在许多有机和无机化合物中发现的高度用途元素。这种多功能性源于已探索的四气和串联特性。碳通过与其他元素的电子共享形成键,这一方面称为共价键形成。在氧气,氮气和其他共价形成的化合物的背景下也讨论了这种键合。本章深入研究了不同碳化合物的结构,包括其刘易斯点结构和电子构型。它根据其结构排列(直链,支链或环状)以及它们是饱和(仅单键)还是不饱和(双键或三键)对有机化合物进行分类。功能组,包括羟基(-OH),羧酸(-cooh),氯(-cl),酮(-CHO),醛(-CHO),醛(-CN)和氰化物组。本章进一步讨论了这些复杂分子的系统命名方法,强调了特定的碳基化合物,例如乙醇和乙酸及其物理和化学特性。转到第10级科学的NCERT解决方案的第5章,该解决方案涉及元素的定期分类。当前,确定了118个已知元素。为了有效地研究每个元素,科学家试图以逻辑顺序对它们进行分类,以预测其物理和化学特性的趋势。但是,约翰·沃尔夫冈·多伯雷纳(JohannWolfgangDöbereiner)(1817)和约翰·纽兰兹(John Newlands)(1866年)的初步尝试,例如《三合会方法》和纽兰兹的八度法,由于局限性而未能普遍应用。原子数成为分类的关键标准。dmitri Mendeleev通过根据其原子质量安排元素来开发一种更准确的方法。他观察到这种方式安排时性质的周期性复发,导致他制定了定期定律:“元素的性质是其原子质量的周期性功能。”Mendeleev的周期表具有垂直柱(组)和水平行(周期)。该系统比以前的方法更准确,可以通过在其表格中留出空白来预测缺失元素。模型具有一些优点和缺点,导致现代周期系统的出现。同一组中的元素共享相同数量的最外部电子,而同一时期的元素具有相同数量的最外壳。此模式可以预测增加或减少。本章探讨了许多这样的趋势。第6章 - 生命过程本章深入研究了各种生物学过程,使生物能够维持生命。这些包括消化,呼吸和循环系统。这些过程的重要性得到了强调,因为它们允许通过消化,通过呼吸氧合和通过循环运输营养的食物消费。本章首先讨论营养,该营养涉及一种有机体吸收食物,利用食物来进行能量,生长,维修和维护。自养营养和异养营养,其中自养营养用光合作用的植物举例说明。细胞生物中探索了细胞营养。异营养营养是由动物体现的,包括寄生,腐生和全二营养等不同类型。人类营养,其中包括唾液腺,舌头和牙齿。食物通过食道进行,在肝脏的胆汁汁和含有消化酶的胰汁的帮助下进行消化。呼吸是另一个关键过程,涉及气体交换(呼吸)和细胞呼吸(分解简单的食物以获取能量)。详细讨论了人类呼吸系统,突出了其成分,例如咽,支气管,肺,膜片,以及吸入和呼气的机制。循环涉及在整个人体中运输养分和废物。血液通过心脏泵送并通过静脉运输,讨论了红色和白色血细胞等不同成分。还探索了心脏的四个腔室。在植物中,简单化合物(例如CO2)是通过光合作用吸收的,而植物生长所需的其他原材料则通过根部从土壤中吸收。排泄是另一个生物学过程,涉及从体内清除有害的代谢废物。生物使用各种策略来实现这一目标。人体的排泄系统由两个肾脏,两个输尿管,一个膀胱和尿道组成。控制和协调系统涉及神经系统,激素和反射作用。有三种类型的反应:反射,自愿和非自愿。生物通过创建DNA拷贝和细胞设备来繁殖。各种方法包括裂变,碎片化,再生,出现,孢子形成和营养繁殖。有性繁殖涉及两个人,产生更大的差异。在开花植物中,授粉之后是受精。人类繁殖系统包括睾丸,VAS延迟,囊泡,前列腺,尿道和阴茎,以及男性的卵巢,输卵管,子宫和雌性阴道。有性繁殖涉及雌性阴道中的精子和输卵管中的施肥。遗传和进化论涉及变异积累的长期后果。Mendel的规则决定了性格继承,同时解决了性别确定。可以通过活物种和化石研究进化。复杂的器官可能由于生存优势而发展。由环境因素引起的变化是无法遗产的。物种形成。进化关系是在分类中追溯到的,表明所有人类属于非洲进化并在全球蔓延的单一物种。光反映和折射,表现出诸如反射和折射之类的现象。人类的视野和折射章节深入研究了人类视力和折射的世界,探索光与我们的眼睛相互作用。首先,它讨论了由法律(尤其是球形镜子)支配的光的反射。人类活动对环境有重大影响。使用了球形镜的使用,包括凸面和凹面镜等类型,以及诸如曲率和焦距的关键术语。除了镜子外,本章还涵盖了折射,这涉及从一种介质传递到另一种介质时的光弯曲。Snell的定律控制着折射,并通过矩形玻璃板的示例引入了折射率和光密度等概念。还讨论了镜头,重点介绍其特性及其工作原理,包括融合和分化的镜头,以及双凸和凹面镜头的示例。镜头公式将焦距与图像距离和对象距离联系起来,而符号惯例则牢记为准确。此外,本章涉及人眼的解剖结构和功能,解释了我们的眼睛如何通过适应来关注近距离和遥远的物体。使用射线图以各自的纠正措施讨论了近视,超极性和长老会等缺陷。最后,探索了分散在将白光分解为其成分颜色中的作用。电子的流动在电路中至关重要,安培是电流的标准单元。电池或电池提供了启动电子运动的必要电势差(以伏特为单位)。电阻是反对电子流的导体的属性,受欧姆定律的约束,该定律建立了电压与电流之间的直接关系。根据单位长度和横截面计算特定电阻。- organsims是自己的确切副本吗?电阻定义为导体阻碍电子流的能力,直接随其长度而变化,与其横截面区域成反比,并且也受材料组成的影响。在串联和平行电阻组合中,每种配置的特性都是不同的:串联,电流均匀流动,而在平行的情况下,电压在跨电阻器之间保持恒定。可以通过W = V×I×T在电阻器中耗散的电能,并以WATT作为功率标准单元。在本章中探讨了磁性和电力之间的关系,首先是对基本磁性概念和磁场线的简介。指南针的杆子是说明磁场方向的视觉辅助。使用右手拇指规则描述了由电流导体产生的磁场,而电磁体由包裹在铜线圈周围的铁芯组成。磁场和电流之间的相互作用受Fleming的左手规则的控制,这决定了将最终力的方向在放置在磁场中的导体上的方向。电动机通过电磁诱导原理将电能转换为机械能。这种现象涉及在暴露于变化的磁场时,涉及线圈内诱导的电流的产生,例如由线圈和磁体之间的相对运动产生的磁场或与电荷导体的接近性产生的电场。机械能通过称为发电机的设备将机械能转化为电能。需要适当的废物管理系统来解决这些问题。此转换基于电磁诱导,这是在线圈和导体相对运动时发生的。可以使用Fleming的右手规则确定诱导电流的方向。发电机有两种类型:直流发电机作为电能产生直流电流,而交流发电机会生成交替的电流,其方向定期变化。国内电力通常以50 Hz的频率交流,电压为220V。了解电力在家庭中的工作原理需要了解活线,中性电线和地球电线。隔热红色的活线载有电流,而中性线(绝缘黑色)为返回电流提供了一条路径。隔热绿色的接地线允许在发生故障时安全通过电流。在第14章中 - 能源来源,我们探讨了我们的能量需求如何随着生活水平而增加。为了满足这些要求,我们旨在提高效率并发现新的能源。有三种类型的能源:常规来源,例如化石燃料,热电厂和水力发电厂;通过技术增强的改进的传统资源,例如牛粪和风电场的生物气;以及非惯性来源,例如太阳能,地球能,核裂变和核融合。第15章 - 我们的环境研究了生态系统的相互联系的组成部分。生产商在其余的生态系统中将阳光转化为能量,但是每个营养水平都会损失能量,从而限制了食物链中的水平数量。本章还讨论了生物学放大倍数,这是有害化学物质通过食物链积累的过程。CFC等化学物质的使用损坏了臭氧层,从而允许紫外线辐射损害环境。废物的处置至关重要,因为如果无法正确处理,可生物降解和不可生物降解的废物都会引起环境问题。由于严重的环境问题,以新的方式看着我们的环境和资源至关重要。在第16章中,我们将探索资源的可持续管理,包括土壤,空气和水等自然资源,以及它们如何循环自然。我们将检查自己的资源使用,并考虑使用不当的后果。本章将讨论管理资源在可持续性和保护方面的重要性以及3R方法。我们将研究各种资源,例如森林,野生动植物,水,煤炭和石油,以了解其管理中的问题。在决定如何使用这些资源的决策时,要考虑环境影响和资源库存有限。寻找免费资源来帮助您了解10级科学 - 物理,化学和生物学?在Teachoo中,我们提供了NCERT解决方案,注释和额外问题的全面集合。我们的资源涵盖了该主题的各个方面,包括基于新的CBSE格式的MCQ。- 人类中有什么不同的激素,它如何分泌第8章生物如何繁殖?它以瓦(W)或马力(HP)为单位进行测量。The chapters in Class 10 NCERT Science are: Metallic and Non-metallic Properties Chapter 6 Life Processes - What are Life Processes, Nutrition - Autotrophic Nutrition, Heterotrophic Nutrition, How does Amoeba Obtain its Nutrition, Nutrition in Human Beings, What are Dental Caries - Respiration in Human Beings, Transportation in Human Beings - Heart, How does Blood travel, Platelets, Lymph, How食物和水的运输是否发生在植物中 - 人类和植物排泄物如何,透析第7章控制与协调 - 在上一章中,我们谈到了各种生命过程。在本章中,我们将讨论我们如何控制这种运动,动物的神经系统,神经元的结构 - 反射动作,人脑 - 它的各个部分和功能,什么是神经组织是什么?,植物中如何进行协调?,为什么变异很重要,单一奥兰主义的繁殖模式 - 二元裂变,多重裂变,破碎,再生,萌芽 - 营养传播,孢子形成。电力的商业单位是千瓦时(kWh)。当电流通过导体流动时,由于导体内的电阻而产生加热效果。可以使用各种公式来计算这种热量的生成,例如焦耳定律和傅立叶定律。SI热单元是Joules(J)或瓦特(W)。加热效果的应用包括电器和电炉中的加热元件。涉及磁效应,当电流通过导体流动时,它会产生磁场。电动机将电能转换为机械能。可以通过在导体周围绘制磁场线来可视化该场。右手拇指规则有助于确定磁场的方向。磁场也与其他导体相互作用,从而导致力发展。它通过在磁场中旋转电枢旋转,从而诱导扭矩并最终运动。电磁诱导是不断变化的磁通量在附近导体中诱导电压的过程。电量表使用电磁诱导测量材料的电阻。交替的电流(AC)和直流电流(DC)具有其应用,AC更常用。电动发电机将机械能转换为电能。它们通过在磁场中旋转电枢来工作,从而在附近的导体中诱导电动力。当电流过多流经导体,导致过热或损坏时,可能会发生重载和短路。接地对于安全目的至关重要。能源包括化石燃料,热电厂,水力发电,生物质量,风能和非传统源,例如太阳能,潮汐,波浪,海洋热,地热和核能等常规来源。这些来源的环境后果差异很大。生态系统是指生物与其环境之间的相互作用。它由生物成分(生物)和非生物成分(非生物)组成。营养水平代表生态系统中的喂养关系。食物链说明了通过消费的能量转移。臭氧层耗竭是由于太阳与大气中污染物相互作用的紫外线辐射过多。管理废物涉及减少,再利用,回收,重新利用和拒绝不必要的产品。可生物降解的物质可以自然分解,而非生物降解物可以无限期地持续存在。可持续生活的目标是通过保护森林和野生动植物等自然资源来实现长期环境和谐。水是必不可少的,大坝被用来存放。收集水涉及收集雨水或径流。煤炭和石油是最终耗尽的有限资源。注意:提供的文本分为各章,每个章节包含各种主题,问题和示例。可以单击提供的链接以访问每章的第一个问题。