典型菜单成本模型在参数化以匹配微观价格数据时,无法再现价格变化比例随通货膨胀而增加的程度。它们还预测在存在战略互补性的情况下,菜单成本会大得难以置信,并且分配不当。我们通过沿两个维度扩展多产品菜单成本模型来解决这些缺陷。首先,公司销售的产品是不完全替代品。其次,战略互补性存在于公司层面,而不是产品层面。与标准模型相比,价格变化比例会随着货币冲击的规模而迅速增加,因此我们的模型意味着非线性菲利普斯曲线。
固体解决方案已被用来提高隔音材料的性能,改进的范围通常与所得的晶格参数紧密相关。因此,材料设计非常重要地描述了固体溶液(SSS)的组成依赖性晶格常数。但是,现有模型几乎无法再现组成和晶格常数之间通常非线性的关系。在此,我们通过考虑尺寸因子和电子效应,在虚拟晶体近似框架内提出了一个新模型。模型采用的输入与N -COMPONENT SYSTEM的基本亚置和N参照SSS的基本属性参数一样简单,然后可以预测系统中任何组合物的SS的晶格常数。使用从高吞吐量首先计算获得的数据集的系统验证,可用实验确定了我们模型对各种替代SSS的高可靠性和一般适用性。还讨论了模型的应用和局限性以及前景。预计该模型将加深对材料组成与材料特性之间关系的理解。
背景:心脏病已被确定为心脏病发作的主要原因之一;此外,众所周知,这会导致数十亿个心肌细胞死亡,这无法再现和替换。其余细胞通常面临着血液动力学负担的显着增加。攻击或其他心血管疾病后修复心脏已避免了医学科学。使用心脏病发作的患者的细胞修复心脏肌肉的能力是再生健康的新组织的长期目标。用于心脏病治疗的细胞来源包括人类胚胎干细胞(HESC),已知这些干细胞具有分化为软骨细胞,成骨细胞,脂肪细胞和心肌细胞的能力。心脏成纤维细胞大量存在于心脏中;已知它们参与了心肌的结构,生化,机械和电性能。
摘要,对表面变暖的顶部大气(TOA)辐射反应的现实表示是信任气候模型预测的关键。我们表明,具有自由发展的海洋大气相互作用的耦合模型系统地低估了552个模拟中观察到的全球TOA辐射趋势。在局部,即使模拟自发地重现了观察到的表面温度趋势,TOA辐射趋势的可能性要低于高估。这种反应偏见源于模型无法再现观察到的大规模表面变暖模式以及影响短波辐射的大气物理学的误差。模型更好地表示TOA辐射对局部表面变暖的响应具有相对较低的气候灵敏度。我们的偏见度量是一种基于过程的新方法,它将模型的当前反应与气候变化与未来的行为联系起来。
下压力可用于增加车辆转弯时轮胎的侧向力极限和车辆减速时的制动力极限。空气阻力是决定车辆加速性能的重要因素。前后下压力平衡也有助于车辆稳定性。空气动力学开发的目的是考虑这三个要素之间的平衡,最大化下压力或升阻比。在开发过程中,使用 50% 比例模型在风洞试验中优化车辆形状,然后使用全尺寸风洞试验验证效果。使用 CFD 和粒子图像测速 (PIV) 同时分析气动现象有助于模型比例风洞的开发以有效的方式向前推进。在一定程度上,使用 CFD 定量评估气动载荷也成为可能,使其成为能够支持部分优化过程的工具。作为风洞试验和赛道上实际行驶的车辆之间的桥梁,CFD 的重要性也在日益增加。例如,使用CFD再现轮胎因侧向力而变形时的气流,而这在风洞中用实车是无法再现的,因此对在赛道上行驶的车辆周围的气流有了新的认识。其中一部分认识已在风洞试验中得到验证。
下压力可用于增加车辆转弯时轮胎的侧向力极限和车辆减速时的制动力极限。空气阻力是决定车辆加速性能的重要因素。前后下压力平衡也有助于车辆稳定性。空气动力学开发的目的是考虑这三个要素之间的平衡,最大化下压力或升阻比。在开发过程中,使用 50% 比例模型在风洞试验中优化车辆形状,然后使用全尺寸风洞试验验证效果。使用 CFD 和粒子图像测速 (PIV) 同时分析气动现象有助于模型比例风洞的开发以有效的方式向前推进。在一定程度上,使用 CFD 定量评估气动载荷也成为可能,使其成为能够支持部分优化过程的工具。作为风洞试验和赛道上实际行驶的车辆之间的桥梁,CFD 的重要性也在日益增加。例如,使用CFD再现轮胎因侧向力而变形时的气流,而这在风洞中用实车是无法再现的,因此对在赛道上行驶的车辆周围的气流有了新的认识。其中一部分认识已在风洞试验中得到验证。
下压力可用于增加车辆转弯时轮胎的侧向力极限和车辆减速时的制动力极限。空气阻力是决定车辆加速性能的重要因素。前后下压力平衡也有助于车辆稳定性。空气动力学开发的目的是考虑这三个要素之间的平衡,最大化下压力或升阻比。在开发过程中,使用 50% 比例模型在风洞试验中优化车辆形状,然后使用全尺寸风洞试验验证效果。使用 CFD 和粒子图像测速 (PIV) 同时分析气动现象有助于模型比例风洞的开发以有效的方式向前推进。在一定程度上,使用 CFD 定量评估气动载荷也成为可能,使其成为能够支持部分优化过程的工具。作为风洞试验和赛道上实际行驶的车辆之间的桥梁,CFD 的重要性也在日益增加。例如,使用CFD再现轮胎因侧向力而变形时的气流,而这在风洞中用实车是无法再现的,因此对在赛道上行驶的车辆周围的气流有了新的认识。其中一部分认识已在风洞试验中得到验证。
下压力可用于增加车辆转弯时轮胎的侧向力极限和车辆减速时的制动力极限。空气阻力是决定车辆加速性能的重要因素。前后下压力平衡也有助于车辆稳定性。空气动力学开发的目的是考虑这三个要素之间的平衡,最大化下压力或升阻比。在开发过程中,使用 50% 比例模型在风洞试验中优化车辆形状,然后使用全尺寸风洞试验验证效果。使用 CFD 和粒子图像测速 (PIV) 同时分析气动现象有助于模型比例风洞的开发以有效的方式向前推进。在一定程度上,使用 CFD 定量评估气动载荷也成为可能,使其成为能够支持部分优化过程的工具。作为风洞试验和赛道上实际行驶的车辆之间的桥梁,CFD 的重要性也在日益增加。例如,使用CFD再现轮胎因侧向力而变形时的气流,而这在风洞中用实车是无法再现的,因此对在赛道上行驶的车辆周围的气流有了新的认识。其中一部分认识已在风洞试验中得到验证。
心律失常性心肌病(ACM)是一种遗传性心肌病,其特征是通过纤维脂肪浸润和心肌细胞损失替换心肌。ACM易感性心律不齐的高风险。ACM最初被定义为一种脱染色体疾病,因为导致疾病的大多数已知变异涉及编码脱染色体蛋白的基因。研究这种病理是复杂的,特别是因为人类样本很少见,并且在可用时反映了该疾病最先进的阶段。通常的细胞和动物模型无法再现人类病理的所有标志。在过去十年中,已提出人类诱导的多能干细胞(HIPSC)作为创新的人类细胞模型。现在,HIPSC分化为心肌细胞(HIPSC-CM)现在已被良好控制,并且在许多实验室中广泛使用。该HIPSC-CM模型概括了病理学的关键特征,并为疾病的心肌细胞综合方法和筛查抗心律失常药物(AAD)有时在经验上为患者开了。在这方面,该模型为探索和开发新的治疗方法提供了独特的机会。HIPSC-CMS的使用无疑将有助于开发精密医学,以更好地治愈患有ACM的患者。
随着生成的数据量的不断增长,数据驱动的计算分析在生物医学研究中变得越来越重要。但是,缺乏共享研究成果的实践,例如数据,源代码和方法,会影响研究的透明度和可重复性,这对于科学的发展至关重要。由于不足的文档,代码和数据共享,许多已发表的研究无法再现。我们对2016年至2021年之间发表的453项手稿进行了全面分析,发现其中50.1%未能共享分析法规。即使在那些确实披露其代码的人中,绝大多数人也无法提供更多的研究输出,例如数据。此外,只有十分之一的文章以结构化且可重复的方式组织了其代码。我们发现了代码可用性语句的存在与增加代码可用性之间的显着关联。此外,与进行主要分析的研究相比,进行二级分析的一定比例倾向于共享其代码。根据我们的发现,我们提出提高对代码共享实践的认识,并立即采取措施提高代码可用性,以提高生物医学研究中的可重复性。通过提高透明度和可重复性,我们可以促进科学严格,鼓励协作并加速科学发现。我们必须优先考虑开放科学实践,包括共享代码,数据和其他研究产品,以