获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
Laneless和无方向运动是高速公路网络中连接和自动化车辆(CAVS)的轨迹行为的新型特征。应用此概念可以利用高速公路的最大潜在能力,尤其是在分布不均的方向需求下。尽管如此,消除了在车道和方向的分离域上的传统概念,因此可以增加混乱的驾驶行为和碰撞风险(从而损害安全性)。因此,本文的重点是在这种未来派环境中为骑士的轨迹规划,其双重目标是(i)提供和确保安全性,而(ii)提高了绩效性能。为此,我们提出了一种骑士的算法,以区分潜在的冲突车辆与自己的方向和/或反对的传播流(整个本文档中所谓的威胁)在早期(及时)阶段。之后,威胁工具被聚集为威胁群体。作为下一步,开发了一个分散的非线性模型预测控制(NLMPC)框架,以调节每个单个威胁集群中车辆的运动;从这个意义上讲,这是分别应用于每个群集中的分布式控制器。该控制方法的设计方式可以实现上述双重目标,结合了官能安全性和效率。最后,通过微观仿真研究对所提出的方法的性能进行了研究和评估。结果是有希望的,并确认了公路网络所提出的方法的效果。