摘要 - 从一开始,电池一直是物联网(IoT)的主要电源。但是,就维护和生态不负责任而言,每年替换和处置数十亿电池的成本是昂贵的。由于电池是对可持续物联网的最大威胁之一,因此无电池设备是解决此问题的解决方案。这些设备以使用各种形式的能量收集充电的长寿命电容器运行,从而导致间歇性的开关装置行为。在这项工作中,我们为Lorawan设备的这种间歇性无电池行为建模。此模型允许我们以旨在确定Lorawan设备可以在没有电池的情况下工作的条件以及如何配置其参数的目的来表征性能。结果表明,可靠性直接取决于设备配置(即电容器尺寸,交通电压阈值),应用行为(即传输间隔,数据包大小)和环境条件(即能源收集率)。索引术语 - 事物,无电池的物联网设备,能量收获,洛拉,低功率宽面积网络
间隔系统的编程语言不能忽略时间及其与数据的关系。在没有自定义语言支持的情况下,应用程序代码必须时间戳数据并在每个访问之前执行有效性检查,这使程序逻辑复杂化。为此,基于任务的系统已在每个任务生成的数据上受到定时约束。23一个程序成为DI主导的数据流图,其中节点是任务,边缘定义了数据流和时间约束。rep将程序作为任务图的不满,允许开发人员直接表达数据运动结构和时机,而无需在终止行为中进行推理。正式的框架作品和语言支持对数据新鲜度和时间一致性的支持进一步授权开发人员在交易帐篷系统中启用定时属性。34
EZ-PD™PMG1-B1是一种单芯片解决方案,它集成了USB PD控制器,高压微控制器(MCU),Buck-Boost Controller,电池充电器,单个电池监控和保护。它可以通过替换主微控制器和目标充电器来实现USB-C的实现,从而可以通过高压USB-C PD端口供电,并希望使用MCU来提供附加的控制功能。应用程序包括电力驱动的电器,例如电源和花园工具,智能扬声器,相机,真空吸尘器,无绳厨房用具以及吹风机和电动剃须刀等个人护理设备。
重要的通知本文档中给出的信息在任何情况下均不得被视为条件或特征的保证(“ Beschaffenheitsgarantie”)。关于本文所述的任何示例,提示或任何典型值和/或有关产品应用的任何信息,Infineon Technologies在此不承担任何类型的任何和所有保证和负债,包括对任何第三方的知识财产权利的不限制保证。此外,本文档中给出的任何信息都遵守客户在本文档中规定的义务以及有关客户产品产品以及任何在客户应用程序中使用Infineon Technologies的产品的适用法律要求,规范和标准。本文档中包含的数据专门用于技术训练的员工。客户的技术部门有责任评估产品对预期申请的适用性以及本文档中有关该应用程序中给出的产品信息的完整性。
毫米级无电池硬膜外皮质刺激器 Joshua E. Woods 1,& , Amanda L. Singer 1,2,& , Fatima Alrashdan 1 , Wendy Tan 1 , Chunfeng Tan 3 , Sunil A. Sheth 3 , Sameer A. Sheth 4 , Jacob T. Robinson 1,2,5,6,7 * 1 莱斯大学电气与计算机工程系,6100 Main St, Houston, TX, 77005 2 Motif Neurotech,702 Marshall St, Houston, TX, 77006 3 UTHealth McGovern 医学院神经内科,6431 Fannin St, Houston, TX, 77030 4 贝勒医学院神经外科系,1 Baylor Plaza, Houston, TX, 77030 5 莱斯大学生物工程系, 6100 Main St,休斯顿,德克萨斯州,77005 6 莱斯大学应用物理学项目,6100 Main St,休斯顿,德克萨斯州,77005 7 贝勒医学院神经科学系,1 Baylor Plaza,休斯顿,德克萨斯州,77030 & 这些作者贡献相同 * 通讯作者,jtrobinson@rice.edu 摘要 难治性神经和精神疾病越来越多地使用植入式神经调节装置进行脑刺激疗法治疗。然而,目前市售的刺激系统受到对植入式脉冲发生器和有线电源的需求的限制;这种架构的复杂性会产生多个故障点,包括导线断裂、移位和感染。实现微创方法可以增加获得这些疗法的机会。在这里,我们展示了第一个毫米大小的无导线脑刺激器,用于大型动物和人类受试者。这种数字化可编程的超脑治疗装置 (DOT) 宽度约为 1 厘米,但可以通过硬脑膜产生足够的能量来按需刺激皮质活动。这种极端的小型化是使用最近开发的磁电无线电力传输实现的,它使我们能够达到刺激大脑表面所需的功率水平,而无需直接接触皮质表面。这种外部供电的皮质刺激 (XCS) 开启了简单的微创外科手术的可能性,可以通过永不接触大脑表面的微型植入物实现精确、持久和在家的神经调节。当药物无效、效果不佳或产生无法忍受的副作用时,患者和临床医生越来越多地转向神经调节来寻求有效的治疗方法。对于帕金森病 (PD) 和特发性震颤 (ET),深部脑刺激是治疗震颤 1 和其他症状 2 的标准治疗方法。对于重度抑郁症 (MDD) 和强迫症 (OCD) 等精神健康问题,越来越多的共识认为,当药物无法提供充分治疗时,通过神经生理学调节特定大脑区域的活动可以提供一种有效的治疗方法 3 。经颅磁刺激 (TMS) 就是应用这种刺激的一种方法。TMS 可以使用 1-2 特斯拉的外部磁场 4 ,非侵入性地激活大脑表面几毫米到几厘米大小的小区域,并且已经在大量临床研究中成功用于治疗神经精神疾病。自 1998 年以来,使用 TMS 治疗神经精神疾病的临床试验数量呈指数级增长,翻倍时间约为 2.5 年 5 。根据这些临床试验的数据,FDA 已批准使用 TMS 治疗难治性抑郁症,并且如果患者对传统抗抑郁疗法无效,大多数保险公司都会报销多次临床治疗的费用 6 。还有有希望的数据表明,TMS 可用于治疗强迫症 7 、创伤后应激障碍 8 和阿尔茨海默病 9 。虽然 TMS 是一种经过临床验证的疗法,但这种疗法有两个主要局限性。首先,TMS 系统目前需要大约 3 MW 10 的大峰值功率,这意味着它们目前仅获准在诊所使用。因此,对于住得离 TMS 设施较远或无法从工作或其他生活中抽出时间接受日常 TMS 治疗的患者,无法使用 TMS。其次,每次治疗定位可能不精确,因为每次患者在诊所时都必须对准刺激器。虽然还有其他非侵入性脑刺激形式,如经颅直流刺激 (tDCS) 和经颅交流刺激 (tACS),但没有一种家用神经刺激技术得到广泛使用,可能是因为非侵入性电刺激器产生的电场无法达到直接激活大脑区域所需的场强,而不会激活头皮中的神经,而头皮神经会产生疼痛的副作用 11 。植入式刺激器可以提供精确的电刺激,持续激活大脑,但这些植入物需要复杂的外科手术,其成本和复杂性可能会限制患者的接受度。传统上,慢性刺激器的植入包括由电池供电的植入式脉冲发生器 (IPG),通过电线连接到刺激部位 12–15 。当 IPG 植入胸部时,导线必须穿过头部和颈部,据报道,4% 至 15% 的植入导线会因频繁移动而发生导线移位和断裂 16,17 。或者,也可以将 IPG 植入颅骨中,这需要患者接受开颅手术 18,19 。尽管如此,这些类型的设备已成功用于根据这些临床试验的数据,FDA 已批准使用 TMS 治疗难治性抑郁症,并且如果患者对传统抗抑郁疗法无效,大多数保险公司会报销多次诊所治疗的费用 6。还有有希望的数据表明,TMS 可用于治疗强迫症 7、PTSD 8 和阿尔茨海默病 9。虽然 TMS 是一种经过临床验证的疗法,但这种疗法有两个主要局限性。首先,TMS 系统目前需要大约 3 MW 10 的大峰值功率,这意味着它们目前仅被批准用于诊所。因此,对于那些住得离 TMS 设施很远或无法抽出时间离开工作或其他生活活动来参加日常 TMS 治疗的患者来说,TMS 是无法使用的。其次,由于患者每次在诊所时都必须对准刺激器,因此每次治疗的定位可能不精确。虽然还有其他非侵入性形式的脑刺激,如经颅直流电刺激 (tDCS) 和经颅交流电刺激 (tACS),但没有一种家用神经刺激技术得到广泛使用,可能是因为非侵入性电刺激器产生的电场无法达到直接激活大脑区域所需的场强,而不会激活头皮中的神经,而头皮神经会产生疼痛的副作用 11 。植入式刺激器可以提供精确的电刺激,持续激活大脑,但这些植入物需要复杂的外科手术,其成本和复杂性会限制患者的采用。传统上,慢性刺激器的植入包括由电池供电的植入式脉冲发生器 (IPG),通过电线连接到刺激部位 12–15 。当 IPG 植入胸部时,导线必须穿过头部和颈部,据报道,4% 至 15% 的植入导线因频繁移动而导致导线移位和断裂 16,17 。或者,也可以将 IPG 植入颅骨中,这需要患者接受开颅手术 18,19 。尽管如此,这些类型的装置已成功用于根据这些临床试验的数据,FDA 已批准使用 TMS 治疗难治性抑郁症,并且如果患者对传统抗抑郁疗法无效,大多数保险公司会报销多次诊所治疗的费用 6。还有有希望的数据表明,TMS 可用于治疗强迫症 7、PTSD 8 和阿尔茨海默病 9。虽然 TMS 是一种经过临床验证的疗法,但这种疗法有两个主要局限性。首先,TMS 系统目前需要大约 3 MW 10 的大峰值功率,这意味着它们目前仅被批准用于诊所。因此,对于那些住得离 TMS 设施很远或无法抽出时间离开工作或其他生活活动来参加日常 TMS 治疗的患者来说,TMS 是无法使用的。其次,由于患者每次在诊所时都必须对准刺激器,因此每次治疗的定位可能不精确。虽然还有其他非侵入性形式的脑刺激,如经颅直流电刺激 (tDCS) 和经颅交流电刺激 (tACS),但没有一种家用神经刺激技术得到广泛使用,可能是因为非侵入性电刺激器产生的电场无法达到直接激活大脑区域所需的场强,而不会激活头皮中的神经,而头皮神经会产生疼痛的副作用 11 。植入式刺激器可以提供精确的电刺激,持续激活大脑,但这些植入物需要复杂的外科手术,其成本和复杂性会限制患者的采用。传统上,慢性刺激器的植入包括由电池供电的植入式脉冲发生器 (IPG),通过电线连接到刺激部位 12–15 。当 IPG 植入胸部时,导线必须穿过头部和颈部,据报道,4% 至 15% 的植入导线因频繁移动而导致导线移位和断裂 16,17 。或者,也可以将 IPG 植入颅骨中,这需要患者接受开颅手术 18,19 。尽管如此,这些类型的装置已成功用于每次治疗定位可能不精确,因为患者每次去诊所时都必须对准刺激器。虽然还有其他非侵入性形式的脑刺激,如经颅直流电刺激 (tDCS) 和经颅交流电刺激 (tACS),但没有一种家用神经刺激技术得到广泛使用,可能是因为非侵入性电刺激器产生的电场无法达到直接激活大脑区域所需的场强,而不会激活头皮中的神经,从而产生疼痛的副作用 11 。植入式刺激器可以提供精确的电刺激,持续激活大脑,但这些植入物需要复杂的外科手术,其成本和复杂性可能会限制患者的采用。慢性刺激器的植入传统上包括由电池供电的植入式脉冲发生器 (IPG),并通过电线连接到刺激部位 12–15 。当 IPG 植入胸部时,导线必须穿过头部和颈部,频繁移动会导致导线移位和断裂,据报道,植入导线中有 4% 至 15% 会发生这种情况 16,17 。或者,也可以将 IPG 植入颅骨中,这需要患者接受开颅手术 18,19 。尽管如此,这些类型的设备已成功用于每次治疗定位可能不精确,因为患者每次去诊所时都必须对准刺激器。虽然还有其他非侵入性形式的脑刺激,如经颅直流电刺激 (tDCS) 和经颅交流电刺激 (tACS),但没有一种家用神经刺激技术得到广泛使用,可能是因为非侵入性电刺激器产生的电场无法达到直接激活大脑区域所需的场强,而不会激活头皮中的神经,从而产生疼痛的副作用 11 。植入式刺激器可以提供精确的电刺激,持续激活大脑,但这些植入物需要复杂的外科手术,其成本和复杂性可能会限制患者的采用。慢性刺激器的植入传统上包括由电池供电的植入式脉冲发生器 (IPG),并通过电线连接到刺激部位 12–15 。当 IPG 植入胸部时,导线必须穿过头部和颈部,频繁移动会导致导线移位和断裂,据报道,植入导线中有 4% 至 15% 会发生这种情况 16,17 。或者,也可以将 IPG 植入颅骨中,这需要患者接受开颅手术 18,19 。尽管如此,这些类型的设备已成功用于
摘要:锂 - 离子电池在清洁运输系统中起着至关重要的作用,包括电动汽车,飞机和电动微型。电池电池的设计及其生产过程与它们的表征,监测和控制技术一样重要,以改善行业的运输和可持续性。近几十年来,解决所有提到的方面的数据驱动方法都以有希望的结果进行了大规模发展,尤其是通过人工智能和机器学习。本文介绍了可解释的机器学习中的最新开发,称为XML及其在锂离子电池中的应用。它包括对制造和生产阶段中XML的批判性审查,然后在使用电池时进行状态估计和控制。前者专注于XML,以优化电池结构,特性和制造过程,而后者则考虑了与健康状况,充电和能源状态相关的监测方面。本文通过对现有技术的理论方面进行全面审查并讨论各种案例研究,是为了告知该地区最先进的XML方法的堆栈持有人,并鼓励他们在过渡到Netzero的未来中从ML转向XML。这项工作还强调了电池社区的研究差距和潜在的未来研究方向。
半导体行业集成电路和电源管理的发展迫使电子电路能够更高程度地集成到片上系统解决方案中。传统的低压差稳压器具有较大的外部电容器来补偿频率响应和瞬态变化。为了集成到片上系统应用中,必须移除外部电容器。对于 28nm CMOS 工艺技术,所提出的解决方案提供了一种快速调节路径,无需外部电容器即可补偿低压差稳压器的瞬态响应。该低压差稳压器无需外部电容,具有快速调节路径,供电电压为 1.8V,能够调节 1.2V、1.1V、1V、0.9V、0.8V 和 0.7V 的输出电压。从无外部电容的低压差稳压器的通用无补偿架构来看,在误差放大器中实现了一个值为 5pF 的内部米勒电容,目的是在系统中产生频率补偿并确保其交流稳定性。研究并实施了一种快速调节路径补偿方案,用于补偿负载电容相当于 1 pF 时最大负载电流变化为 1 mA 的瞬态响应。仿真结果表明,低压差稳压器在最先进的架构中具有竞争力,超越了一些架构,输出电压的正负瞬态变化值分别记录为 48 mV 和 49.8 mV,恢复时间为 0.5 µ s。随后进行的 PVT(工艺、电压、温度)极端情况模拟和蒙特卡罗分析表明,所设计的系统符合 ISO 26262 标准。提出了所提系统的布局设计,以供将来集成。
1 奇特卡拉大学电气工程系,奇特卡拉大学工程技术学院,旁遮普 140417,印度;mukul.chankaya@chitkara.edu.in 2 克什米尔大学电气工程系,斯利那加 190006,印度;ikhlaqh@uok.edu.in 3 BEARS,大学城,新加坡国立大学校园,新加坡 138602,新加坡 4 马来西亚理工大学(UTM)工程学院电气工程学院电力工程系,柔佛州新山 81310,马来西亚 5 斯利那加国家理工学院电气工程系,斯利那加 190006,印度; aijaz54@nitsri.net 6 沙特阿拉伯国王沙特大学工程学院电气工程系,利雅得 11421,沙特阿拉伯 7 西班牙卡斯蒂利亚-拉曼恰大学 Ingenium 研究组,雷阿尔城 13071;faustopedro.garcia@uclm.es * 通信地址:hasmat.malik@gmail.com (HM);majedalotaibi@ksu.edu.sa (MAA)
无线技术与生物传感器的融合为在临床环境之外检测和管理医疗状况提供了可能性。伤口感染是临床面临的一大挑战,及时检测对于有效干预至关重要,但目前由于缺乏能够与伤口交互、检测致病菌和无线传输数据的监测技术,这一技术受到了阻碍。在这里,我们报告了一种灵活、无线、无电池的传感器,它使用细菌响应性 DNA 水凝胶提供基于智能手机的伤口感染检测。工程 DNA 水凝胶通过可调节的介电变化选择性地对与致病菌相关的脱氧核糖核酸酶作出反应,这些变化可以通过近场通信进行无线检测。在小鼠急性伤口模型中,我们证明无线传感器甚至可以在感染出现明显表现之前检测到生理相关量的金黄色葡萄球菌。这些结果展示了持续感染监测的策略,这可能有助于改善手术或慢性伤口的管理。