摘要 — 我们研究了无线电信道模拟器在预测特定环境中的信道响应方面的可靠性。已知表面几何布局和材料特性的室内环境适合进行这种特定场地的模拟。我们通过将其预测与特定静态环境中的测量值进行比较来评估该方法的性能。在测量和模拟的一组路径上,路径损耗、Ricean K 因子和 RMS 延迟扩展具有良好的一致性,这表明可以使用设计良好的无线电模拟器可靠地预测系统行为。通常,通过这种或类似技术获得的无线信道模型不会捕捉由于环境中人员移动而导致的信道响应的时间变化。我们使用随机过程处理信道响应的时变部分。通过对几种典型办公场景进行信道探测实验,我们表明自回归过程可用于为几种不同的运动场景建模随时间变化的抽头增益。
摘要 — 我们研究了无线电信道模拟器在预测特定环境中的信道响应方面的可靠性。室内环境的表面几何布局和材料特性已知,因此适合进行这种针对特定地点的模拟。我们通过将该方法的预测结果与特定静态环境中的测量结果进行比较来评估该方法的性能。在测量和模拟的一组路径上,路径损耗、莱斯 K 因子和 RMS 延迟扩展具有良好的一致性,这表明设计良好的无线电模拟器可以可靠地预测系统行为。通常,通过这种或类似技术获得的无线信道模型不会捕捉由于环境中人员移动而导致的信道响应的时间变化。我们使用随机过程处理信道响应的时变部分。通过对几个典型的办公场景进行信道探测实验,我们表明自回归过程可用于为几种不同的运动场景建模时变抽头增益。
ELCT 732 - 无线电传播和无线信道建模 (3 学分) 平面波传播和各种介质的影响。不同的传播机制描述。计算不同传播机制的场强和功率的数学方法。天线/噪声原理。无线信道对信号的影响。信道建模为线性、时变滤波器。延迟/多普勒频移。经验和统计无线信道模型。多天线信道特性。先决条件:ELCT 562 或成功完成电磁学、概率/统计和线性系统理论的本科课程。
我们提出了量子信念传播 (QBP),一种基于量子退火 (QA) 的低密度奇偶校验 (LDPC) 错误控制码解码器设计,该解码器在 Wi-Fi、卫星通信、移动蜂窝系统和数据存储系统中得到了广泛应用。QBP 将 LDPC 解码简化为离散优化问题,然后将简化的设计嵌入到量子退火硬件中。QBP 的嵌入设计可以在具有 2,048 个量子比特的真实最先进的 QA 硬件上支持块长度高达 420 位的 LDPC 码。我们在真实的量子退火器硬件上评估性能,对各种参数设置进行敏感性分析。我们的设计在高斯噪声无线信道上在 SNR 9 dB 下实现了 20 µ s 内的 10 − 8 比特错误率和 50 µ s 内的 1,500 字节帧错误率 10 − 6。进一步的实验测量了在真实无线信道上的性能,需要 30 µ s 才能在 SNR 15-20 dB 下实现 1,500 字节 99.99% 的帧传输率。QBP 的性能优于基于 FPGA 的软信念传播 LDPC 解码器,在 SNR 低 2.5–3.5 dB 时达到 10 − 8 的误码率和 10 − 6 的帧错误率。就局限性而言,QBP 目前无法在当前的 QA 处理器上实现实用的协议大小(例如 Wi-Fi、WiMax)LDPC 码。我们在本工作中的进一步研究提出了未来成本、吞吐量和 QA 硬件趋势方面的考虑。
摘要 — 飞机驾驶舱内的通信目前基于有线或射频连接。例如,已经引入无线技术来支持平板电脑。然而,射频技术的使用仍然有限。例如,耳机的无线连接在舒适性和灵活性方面对飞行员来说是一个优势,但也存在一些问题,尤其是射频干扰和音频数据安全问题。基于可见光或红外线的光学无线通信为克服这些问题提供了有趣的可能性。事实上,由于光束被限制在环境中,这项技术可以抵御攻击风险,从而提高安全性。此外,射频免疫可确保没有干扰,从而为通信提供更多资源。本文首次在文献中采用模拟方法研究了飞机驾驶舱内飞行员耳机连接的光学无线信道,并根据给定链路可靠性可实现的最大数据速率确定了其性能。索引术语 — 光学无线通信;红外传输;信道建模。
摘要 — 飞机驾驶舱内的通信目前基于有线或射频连接。例如,已经引入无线技术来支持平板电脑。然而,射频技术的使用仍然有限。例如,耳机的无线连接在舒适性和灵活性方面对飞行员来说是一个优势,但也存在一些问题,尤其是射频干扰和音频数据安全问题。基于可见光或红外线的光学无线通信为克服这些问题提供了有趣的可能性。事实上,由于光束被限制在环境中,这项技术可以抵御攻击风险,从而提高安全性。此外,射频免疫可确保没有干扰,从而为通信提供更多资源。本文首次在文献中采用模拟方法研究了飞机驾驶舱内飞行员耳机连接的光学无线信道,并根据给定链路可靠性可实现的最大数据速率确定了其性能。索引术语 — 光学无线通信;红外传输;信道建模。
智能反射面 (IRS) 是一种数控超表面,包含大量无源反射元件。通过重新配置每个元件的反射系数,IRS 可以控制无线信道,以提高通信系统的覆盖范围和容量 [1–3]。然而,要通过 IRS 增强信道特性,获取准确的信道状态信息是不可避免的。因此,在本文中,我们通过利用固有信道结构来解决 IRS 辅助多输入多输出 (MIMO) 系统的上行信道估计问题。相关工作:早期关于 IRS 辅助通信系统的信道估计工作主要集中于非结构化信道模型 [4],采用最小二乘或线性最小均方误差估计器 [5]。然而,在较高频段(例如毫米波或太赫兹频段),移动站 (MS)-IRS 和 IRS-基站 (BS) 信道在角域中都表现出很强的稀疏性 [5]。这一观察结果促使 IRS 辅助信道估计算法探索信道的固有稀疏性,从而减少导频开销 [5]。最近的估计器通过考虑额外的
在无线传感器网络中,多级量化是必要的,以便在最小化传感器功耗和最大化融合中心 (FC) 的检测性能之间找到一个折衷点。以前的方法一直在这种量化中使用距离度量,例如 J 散度和 Bhattacharyya 距离。这项工作提出了一种不同的方法,该方法基于两种假设下的传感器输出的最大平均熵,并在基于 Neyman-Pearson 标准的分布式检测方案中利用该方法检测点源。当传感器输出在 FC 上无误差可用时,以及当使用非相干 M 元频移键控通信通过瑞利衰落信道传输基于 MAE 的多级量化传感器输出时,都对所提出的最大平均熵 (MAE) 方法在量化传感器输出方面的接收器操作特性进行了评估。模拟研究表明,在无误差融合和已纳入无线信道影响的情况下,MAE 都是成功的。正如预期的那样,性能随着量化级别的提高而提高,并且六级量化接近非量化数据传输的性能。
摘要 无人驾驶飞行器 (UAV),通常称为无人机,在从军事行动到商业用途等广泛领域得到越来越广泛的应用。然而,随着无人机越来越融入日常生活,由于在开放无线信道上运行且机载计算资源有限而产生的漏洞,安全和隐私问题也同样不断升级。此外,随着量子计算机的出现,确保无人机通信安全和隐私的传统加密方法面临严重风险。这些风险包括未经授权的访问、数据泄露和网络物理攻击的可能性,这些攻击会危及无人机操作的完整性、机密性和可用性。量子计算机有望分别在 Grover 和 Shor 算法的支持下打破传统的加密方法,例如对称和非对称方案。因此,传统的加密算法必须让位于抗量子算法,即后量子密码 (PQC) 算法。尽管研究人员积极开发、测试和标准化新的 PQC 算法,但尽管通过这些持续努力取得了进展,威胁仍然存在。这篇评论文章首先研究了安全和隐私形势,包括无人机的威胁和要求。本文还讨论了 PQC 和各种 PQC 系列以及 NIST 实施和标准化过程的状态。最后,我们探讨了在无人机上实施 PQC 的挑战和未来方向。
a 研究学者,国家理工学院 (NIT) ECE 系,斯利那加,J&K – 190006 b 助理教授,BGSB 大学拉朱里 (J&K)-185234 c 教授,NIT ECE 系,斯利那加,J&K – 190006 电子邮件:mubasher2003@gmail.com,gulammohdrather@yahoo.co.in 收到日期:2020 年 3 月 31 日;接受日期:2020 年 5 月 2 日;发表日期:2020 年 8 月 8 日 摘要:我们正处于通信时代,高速应用需要非常大的带宽。在可用的带宽技术中,光纤似乎是最合适、最合适的。主干网上铺设的光纤技术几乎取代了现有的同轴电缆。将光纤连接扩展到最终用户,尤其是在拥挤和偏远地区,在成本和安装时间方面是一项相当困难的任务。因此,首英里和最后一英里连接 (FLMC) 仍然是将光纤的优势扩展到网络边缘的瓶颈。在大多数应用中,从主干网到最终用户的连接是通过容量远小于光纤的无线电或铜链路进行的。考虑到新兴应用的性质和规模,需要使用适当的技术来解决 FLMC。为了解决这个问题,新兴的解决方案是光无线通信,如自由空间光学 (FSO)。由于 FSO 具有带宽大、成本低等特性,它正成为一种更有前途的替代方案。在本文中,我们讨论了通过 FSO 链路实现首英里和最后一英里连接的可能解决方案,因此可以通过 FSO 通信以可靠且经济有效的方式弥合光纤核心和网络边缘之间的差距。这项提议工作的意义给人留下了深刻的印象,即在 FLMC 中使用 FSO 通信优于现有的通信。FSO 通信可以一丝不苟地满足不断增长的高带宽需求。仿真结果表明,实现了理想的性能,并使用 Q 因子和 BER 等性能指标进行了分析。索引术语:自由空间光学、带宽要求、光无线、第一英里和最后一英里连接。术语 FSO 自由空间光学 FLMC 第一英里和最后一英里连接 RF 射频 OWC 光无线信道