摘要:粮食不安全一直是全球面临的威胁,迫使研究人员开发即使在变化的气候条件下也能提高产量的作物。水稻是一种重要的主食和战略作物,有助于确保全球经济稳定、粮食和营养安全。它满足了世界各地人民 20% 的卡路里需求。最近,由于气候引起的水资源短缺以及人力资源、耕地等资源的减少,水稻种植和研究面临着前所未有的困难。在这方面,直播水稻 (DSR) 作为一种资源节约技术,作为传统移栽的潜在替代方案,越来越受欢迎,因为它可以减少投入需求、减少甲烷和二氧化碳排放、增强对气候变化的适应性并增加经济回报。DSR 中的杂草威胁在很大程度上阻碍了其取得丰硕成果。 DSR 高度依赖除草剂来控制杂草,因为人工除草和其他耕作方式需要大量劳动力,而这又会遭遇作物损伤(非选择性除草剂)和抗性杂草(选择性除草剂)的挫折。耐除草剂 (HT) 水稻可能是 DSR 杂草管理的有效长期解决方案。在此背景下,已经开发了三种 HT 水稻系统,即咪唑啉酮、草甘膦和草铵膦。本评论深入了解了 DSR 对 HT 水稻的需求、其生产系统、局限性以及正确管理水稻杂草的管理指南。
生态与生物多样性系,生命科学学院,安德烈斯·贝洛大学,圣地亚哥,智利B生物多样性研究所,动物健康与比较医学,格拉斯哥大学医学兽医和生命科学学院Iologie,蒙彼利埃,法国和Mivegec的Iologie,IRD,CNRS,CNRS,MONTPELLIER,法国蒙彼利埃大学,劳动力Mixte International,Drisa,IRD,IRD用于细菌耐药性合作研究的千年核,Microb-R,Santiago,智利和实验室服务HôpitaldelaMère等人,N'djaména,N'djaména,Chad J A,Lima,Lima,Peru K MRC,秘鲁K MRC - 格拉斯哥大学病毒研究中心,英国格拉斯哥大学,格拉斯哥大学,英国,格拉斯哥大学
[研究背景] 在当今的超老龄化社会中,因疾病或受伤而患有骨骼和关节疾病的人数增加正在成为一个问题,对于植入体内进行治疗的生物材料的需求日益增加。金属材料具有强度与延展性优异的平衡性,且机械可靠性高,因此被广泛用作必须支撑大负荷的骨替代植入物。 植入物需要具有优异的耐磨性和耐腐蚀性。但由于它是一种高强度的金属材料,其力学性能一般与柔韧的活骨有显著差异,而且其特别高的杨氏模量是有问题的。当植入物的杨氏模量远高于骨骼时,大部分力会施加在植入物上而不是周围的骨骼上(这种现象称为应力屏蔽),这会导致骨质萎缩、骨矿物质密度降低和骨折风险增加。因此,近年来,需要开发具有与活骨相当的低杨氏模量的新型金属材料。 临床上最常用的生物医学金属材料是价格低廉的不锈钢SUS316L、耐磨性优良的CoCr合金、杨氏模量相对较低的Ti(钛)合金。然而,不锈钢和现有的钴铬合金的杨氏模量大约比活骨高10倍。虽然存在杨氏模量较低的Ti合金,但其杨氏模量高于活骨,且存在耐磨性低的问题。目前,很少有金属材料能具有与活体骨骼相当的杨氏模量,同时还具有优异的耐磨性和耐腐蚀性。特别是,低杨氏模量这一重要的机械性能通常与高耐磨性之间存在权衡关系,开发出一种兼具这些特性的新型合金一直很困难。 另一方面,在尖端医疗中使用的超弹性合金中,表现出约8%超弹性应变的NiTi(镍钛)合金的应用最为广泛。然而,NiTi合金中含有较高的Ni元素,人们担心其可能会引起过敏反应。为此,人们开发出了不含Ni的Ti基超弹性合金,但其超弹性应变仅为NiTi合金的一半左右。 【主要发现】
盐胁迫是继干旱之后第二大破坏性非生物胁迫,限制了全球水稻产量。通过遗传增强耐盐性是一种有前途且经济有效的方法,可在盐胁迫地区提高产量。耐盐性育种具有挑战性,因为水稻对盐胁迫的反应具有遗传复杂性,受低遗传力和高 G×E 相互作用的次要基因控制。许多生理和生化因素的参与进一步复杂化了这种复杂性。绿色革命时代以提高产量为目标的密集选择和育种工作无意中导致了控制耐盐性的基因座逐渐消失,品种间遗传变异性显著降低。遗传资源利用有限和改良品种遗传基础狭窄导致现代品种对耐盐性的响应处于停滞状态。野生种是拓宽驯化水稻遗传基础的极佳遗传资源。利用未被充分利用的野生稻近缘种的新基因来恢复驯化过程中被消除的耐盐性位点,可使水稻品种获得显著的遗传增益。野生稻种 Oryza ru fi pogon 和 Oryza nivara 已被用于开发一些改良稻种,如 Jarava 和 Chinsura Nona 2。此外,增加序列信息获取途径和增强对野生近缘种耐盐性基因组学的了解,为在育种计划中部署野生稻种质提供了机会,同时克服了野生杂交中出现的交叉不亲和性和连锁阻力障碍。预育种是构建可用于育种计划的材料的另一种途径。应努力系统地收集、评估、表征和揭示野生稻的耐盐性机制
如果BSV(采购预订)字段的输入为“是”;那么该德国联邦国防军机构将被排除在招标请求之外(根据 VOL A,这不是商业运作)。
如果BSV(采购预订)字段的输入为“是”;那么该德国联邦国防军机构将被排除在招标请求之外(根据 VOL A,这不是商业运作)。
摘要:本研究的目的首先是检查在为期七年的精液监测计划中,精子质量下降与细菌相关的普遍性,其次是研究四种不同的耐多药细菌的生长动态及其对精液储存期间精子质量的影响。在来自精子中心的 3219 个样本中,0.5% 的样本因细菌污染而导致精子质量下降。在添加了粘质沙雷氏菌和产酸克雷伯氏菌的样本中,在 17 ◦ C 的温度下储存时,细菌生长了六个对数级,导致精子活力、膜完整性、膜流动性和线粒体膜电位丧失,>10 7 CFU/mL(p < 0.05)。在 5 ◦ C 的 Androstar Premium 稀释剂中储存可有效抑制它们的生长。木糖氧化无色杆菌和洋葱伯克霍尔德菌在 17 ◦ C 下生长受限,最高可达两个对数级,且不会损害精子质量。总之,精子可以耐受中等量的耐多药细菌,低温、无抗生素的精液储存可有效限制细菌生长。应重新考虑在精液稀释剂中持续使用抗生素。
摘要:土壤盐分抑制作物发芽和幼苗生长,导致作物立地不均、生长不均匀、产量低下。本研究旨在评估接种从盐渍土中分离的植物生长促进细菌 (PGPB) 菌株 (E1 和 T7) 的十字花科种子的早期耐盐性。在对照和盐度条件下培养未接种和接种的 Lobularia maritima、Sinapis alba 和 Brassica napus 种子,首先在琼脂平板中评估每种盐的发芽抑制浓度,然后在用含有 0 或 75 mM NaCl 的水灌溉的土壤中培养。我们的结果表明,T7 是唯一能够在盐渍条件下增加 L. maritima 发芽的菌株。然而,接种 T7 的 L. maritima 和 S. alba 植物以及接种 E1 的 B. napus 植物的茎生物量、根长和分枝数均有所增加。同时,这些幼苗表现出较少的氧化损伤和更强的平衡植物活性氧生成的能力。这项研究表明,用耐盐 PGPB 菌株接种种子是一种适合在早期阶段改善盐度负面影响的策略。尽管如此,观察到的特定植物-宿主相互作用凸显了针对特定不利环境条件建立定制的 PGPB-作物关联的必要性。
1 Sivas科学技术大学农业科学和技术教职员工,Sivas,Türkiye,Türkiye,2田间作物系,农业学院,Çukurova大学,ÇukurovaUniversity,Adana,Türkiye,Türkiye,东部3号东部的Meditererranean农业研究所研究所,国际贸易研究所,国际工艺研究所 Tropics, Hyderabad, Telangana, India, 5 Plant Stress Tolerance Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa, 6 DSI-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville, South Africa, 7 Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea, 8 Advanced Engineering School (Agrobiotek), Tomsk State大学,俄罗斯汤姆斯克大学,9kır的ehir ahi evran Universitesi ziraat fakultesi tarla tarla bitkileri bolumu,kır的埃希尔,türkiye,10次摩托大学园艺研究所,jeju national University,Jeju National University,Jeju National University,Jeju jeju,jeju,jeju
1 Sidney Kimmel医学院微生物和免疫学系,托马斯·杰斐逊大学,费城,宾夕法尼亚州费城,19107年,美国2分子寄生虫学实验室,林赛·金博尔研究所,纽约血液中心,纽约血液中心,纽约,纽约,10065帕克,阿德莱德公园,澳大利亚5042,澳大利亚5 Alpha Genesis Inc.,Yemassee,SC 29945,美国6 IDEXX BIOANALYTICS,西萨克拉曼多,CA 95605,美国7,美国7分司,药理学和实验治疗系,Sidney Kimmel医学院美国97030,贝勒医学院国家热带医学院儿科开发中心,美国9号,美国9号感染研究所,兽医与生态科学研究所,利物浦利物浦L3 5rf,英国利物浦大学 *通信 *通信); David.abraham@jefferson.edu(D.A。)†这些作者为这项工作做出了同样的贡献。