摘要:网络化多传感器用于解决机动目标跟踪问题。为避免非线性动态函数的线性化,获得更准确的机动目标估计,提出了一种用于机动目标跟踪的自适应信息加权协同滤波器。利用无迹变换计算伪测量矩阵,以利用测量的信息形式,这是协同迭代所必需的。为提高机动目标跟踪精度并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在各个动态模型的相邻节点之间应用信息加权协同协议。基于多个模型的后验概率,通过对模型条件估计的加权组合来获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网估计一致性方面具有优异的性能。
摘要:网络化多传感器用于解决机动目标跟踪问题。为避免非线性动态函数的线性化,获得更准确的机动目标估计,提出了一种用于机动目标跟踪的自适应信息加权协同滤波器。利用无迹变换计算伪测量矩阵,以利用测量的信息形式,这是协同迭代所必需的。为提高机动目标跟踪精度并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在各个动态模型的相邻节点之间应用信息加权协同协议。基于多个模型的后验概率,通过对模型条件估计的加权组合来获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网估计一致性方面具有优异的性能。
摘要:网络化多传感器用于解决机动目标跟踪问题。为避免非线性动态函数的线性化,获得更准确的机动目标估计,提出了一种用于机动目标跟踪的自适应信息加权协同滤波器。利用无迹变换计算伪测量矩阵,以利用测量的信息形式,这是协同迭代所必需的。为提高机动目标跟踪精度并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在各个动态模型的相邻节点之间应用信息加权协同协议。基于多个模型的后验概率,通过对模型条件估计的加权组合来获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网估计一致性方面具有优异的性能。
摘要:网络化多传感器用于解决机动目标跟踪问题。为避免非线性动态函数的线性化,获得更准确的机动目标估计,提出了一种用于机动目标跟踪的自适应信息加权协同滤波器。利用无迹变换计算伪测量矩阵,利用测量的信息形式,为协同迭代提供必要的信息。为提高机动目标跟踪精度,并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在各个动态模型的相邻节点之间应用信息加权协同协议。基于多个模型的后验概率,通过模型条件估计的加权组合获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网估计一致性方面具有优越的性能。
摘要 — 本文旨在研究在存在可再生能源并考虑动态线路额定值 (DLR) 约束的情况下随机可重构混合交直流微电网 (MG) 的最优调度。DLR 是一个实际限制,可能会影响线路的载流量,特别是在孤岛模式下,当线路在与公用事业互连点缺乏主发电源时达到最大容量。为了防止线路过载,开发了重构技术,通过一些预置开关来改变网络的拓扑结构。采用线性化技术来解决节点交流功率流和 DLR 约束的非线性问题。无迹变换技术用于模拟不确定性,包括可再生能源发电、每小时负荷需求和每小时市场价格以及 DLR 不确定性,例如太阳辐射、风速和环境温度。最后,进行敏感性分析,以了解风速和太阳辐射对混合交流-直流 MG 能量管理的影响。在改进的 IEEE-33 总线测试系统上检查了所提出方法的性能,证明了所提出的技术在最小化混合
摘要 —本文研究了插电式混合动力汽车 (PHEV) 的不协调、协调和智能充电对微电网 (MG) 优化运行的影响,并结合了动态线路额定值 (DLR) 安全约束。当配电线路达到最大容量时,DLR 约束(尤其是在孤岛模式下)会影响 MG 馈线的载流量。为了克服任何线路中断或应急情况,智能 PHEV 可用于帮助提高电网安全性。但是,使用 PHEV 会导致更高的功率损耗和馈线过载问题。为了解决这些问题,本文采用了一种重构技术。一种启发式算法(称为基于集体决策的优化算法)用于克服问题的非凸性和非线性。采用无迹变换技术来模拟由太阳辐射、负载需求和天气温度引起的 DLR 不确定性,以及由不同的充电策略、正在充电的 PHEV 数量、充电开始时间和充电持续时间引起的 PHEV 不确定性。此外,设计了一种深度学习门控循环单元技术来预测可再生能源输出,以减轻可再生能源组件中的不确定性。部署了经过修改的 IEEE 33 总线测试网络来评估所提模型的效率和性能。
提出了一种用于水下监视应用中的协同轨迹检测的漂移声学传感器网络最优部署决策支持系统,并在模拟场景中进行了测试。该系统集成了海水流预报、传感器范围模型和简单的漂移浮标运动模型,以预测传感器位置和时间网络性能。采用多目标遗传优化算法,通过同时优化两个服务质量指标(网络区域覆盖和跟踪覆盖的时间平均值)来搜索一组帕累托最优部署解决方案(即网络漂移声纳浮标的初始位置)。优化后找到的解代表了两个指标之间不同的效率权衡,任务规划人员可以方便地评估这些解,以便在两个冲突目标之间选择具有所需折衷的解决方案。还通过无迹变换进行了灵敏度分析,以测试解决方案对网络参数和环境不确定性的稳健性。提供了利用真实概率海水流预报的模拟场景的结果,显示了所提方法的有效性。未来的工作是使该工具完全可操作并准备在真实场景中使用。� 2013 北约科学技术组织,海事研究和经验中心
提出了一种用于水下监视应用中的协同轨迹检测的漂移声学传感器网络最优部署决策支持系统,并在模拟场景中进行了测试。该系统集成了海水流预报、传感器范围模型和简单的漂移浮标运动模型,以预测传感器位置和时间网络性能。多目标遗传优化算法用于通过同时优化两个服务质量指标(网络区域覆盖和跟踪覆盖的时间平均值)来搜索一组帕累托最优部署解决方案(即网络中漂移声纳浮标的初始位置)。优化后找到的解决方案代表了两个指标之间不同的效率权衡,任务规划人员可以方便地评估这些解决方案,以便在两个冲突目标之间选择具有所需折衷的解决方案。还通过无迹变换进行敏感性分析,以测试解决方案对于网络参数和环境不确定性的稳健性。提供了利用真实概率海水流预报的模拟场景的结果,显示了所提方法的有效性。未来的工作预计将使该工具完全可操作并准备在实际场景中使用。� 2013 北约科学技术组织,海事研究与实验中心。由 Elsevier Ltd. 出版。保留所有权利。