1. ABET 认证要求研讨会(2 小时),2019 年 9 月 2 日星期一。 2. ABET 认证标准研讨会(2 小时),2019 年 10 月 7 日星期一。 3. 评分标准研讨会(3 小时),2019 年 10 月 27 日星期一。 4. 毕业项目和暑期培训 KPI 研讨会(2.5 小时),2019 年 11 月 26 日星期四。 5. 课程文件准备研讨会(1.5 小时),2019 年 11 月 28 日星期二。 6. 调查分析研讨会(3 小时),2019 年 12 月 5 日星期二。 7. 自学报告准备研讨会(3 小时),2019 年 12 月 21 日星期二。 8. 考试模板规范和设计研讨会(1.5 小时),2020 年 2 月 23 日星期一。 9.基于考试的课程学习成果(2.5 小时),2020 年 2 月 24 日星期一。10. 预先评分标准 KPI 研讨会(2 小时),2019 年 12 月 2 日星期一。11. 综合课程设计研讨会(3.5 小时),2020 年 2 月 4 日星期二。12. 课程学习成果评估、挑战和成就研讨会(3 小时),2020 年 1 月 27 日星期一。
- 芝加哥大学和Argonne国家实验室(ANL)开发了一种新技术,该技术将单晶钻石膜直接粘合到量子和电子技术中的各种材料,包括硅。 Diamond提供了无与伦比的特性,其电子技术具有宽带的带镜头,极好的热导率和介电强度,量子技术可在室温下进行出色的量子传感。但是,由于底物和生长层是同质材料,因此很难将不同材料直接积累到设备中,这需要使用大量钻石。在这项研究中,通过使用基于血浆激活的键合技术,我们通过确保钻石和载体基板的光滑表面成功地粘结了极其平坦的材料表面,准确的厚度和材料的原始材料质量。退火过程促进和加强粘结,从而使钻石膜能够承受各种纳米化过程。在钻石中,每个碳原子与其他四个碳原子之间的电子共价键形成其坚硬,耐用的内部结构。这次,通过在钻石膜的表面上创建许多悬挂的键(无伴侣的键),这是形成了对不同材料“粘合”的表面。结果,钻石膜直接粘合到诸如硅,融合二氧化硅,蓝宝石,热氧化物膜,尼贝特锂等的材料,而无需使用介体进行粘附。与厚度为数百微米的散装钻石(通常是在量子研究中使用的),而是合并了100 nm薄钻石膜,同时保持适合高级量子应用的自旋相干性。 - 这项新技术基于从1940年代开发的大型晶体管的互补金属氧化物半导体(CMOS)的进步,转至现代计算机等中使用的功能强大,精细的集成电路。 - 该技术已获得专利,现在已通过大学的波尔斯基企业家和创新中心进行商业化。这项研究得到了美国能源部(DOE)科学局(SC)的国家量子信息科学研究中心的支持,作为Q-Next中心的一部分。
标题:用于实时信号处理应用的容错 VLSI 架构设计摘要:由于设计复杂性和晶体管密度的增加导致芯片故障率很高,容错在当今的数字设计中变得极为重要。我们已经确定了现有容错方法的主要缺陷,并尽可能地尝试纠正它们。我们修改了传统的动态重构方法,使其适用于实时信号处理应用,并结合了热备用、优雅降级、级联性和 C 可测试性。我们还提出了一些新的静态冗余技术,这些技术在各个方面都优于现有方法,并且具有实际适用性。• 使用 XILINX 中的 verilog HDL 和原理图级与 virtex-6 进行 RTL 设计、仿真和验证• 使用 SYNOPSYS 工具进行设计和验证以及面积和关键路径结果的计算• 使用 CADENCE 工具进行一些面积和延迟计算。
截至 24 年 12 月 23 日 JN 表格 URL 已更改:https://cnrj.cnic.navy.mil/Operations-and-Management/Human-Resources/How-To-Apply-MLC-IHA -JOB-Opportunities/ JN-表格/
ken-ichi Yamada,Shun Ishibashi,Naohiro Sata,Marcus Conrad,Masafumi Takahashi#
有。当进行EMD时,测得的EEG波形根据波形不同可以达到IMF3,甚至IMF4。从 IMF2 开始的所有添加的波形都使用以下方法进行区分。本实验对Fz、Cz、Pz三个电极进行EMD分析,对四个选项分别比较IMF中P300分量的幅值,输出并统计幅值最大的选项。然后将最受欢迎的选项确定为受试者选择的菜单。 3.结果表1显示了所有受试者的两级菜单选择实验的结果。括号内的刺激为目标刺激,括号左边的刺激为选择刺激。目标刺激和选定刺激匹配的情况显示为黄色。受试者 A 能够在任务 2 和 3 中选择第二层和第三层中的目标刺激。受试者B能够在任务1和4中选择目标刺激,并且能够区分第一层级中的所有目标。受试者 C 在所有试验中都能够区分两个层级。