尽管 30 多年来,烟火装置一直是航空航天计划中许多关键机械功能成功的关键,但地面和飞行中的故障仍然时有发生。后续调查显示,几乎没有或根本没有关于 .测量对系统变量性能的影响或确定功能裕度的定量信息。以下三个示例放大了这些观点。1976 年,在 Vikinq 着陆器计划中,用于在火星表面成功部署天线的拔销器设计在 1986 年的第二次应用中失败,并被废弃。在经过 20 多年的飞行成功后,航天器分离接头在 1984 年的地面试验中失败;同样的接头,设计用于完全容纳爆炸物,但在 1994 年从航天飞机货舱释放有效载荷时爆裂。20 世纪 60 年代初为 Geminl 计划创建的“完全合格”阀门设计在 1994 年因结构故障而引发肼燃烧,这是之前未曾发现的故障模式。显然需要改进烟火设计、开发和鉴定指南。
摘要 在安全关键工作场所发生人为失误通常与基础设施损坏、人员受伤甚至死亡有关。然而,大多数人天生就想避免失误,但人为失误仍然时有发生。本研究探讨了航空业背景下执行高后果任务的人与技术之间的相互作用。指导这项研究的定性方法包括事件报告、观察和对飞行员和工程师的采访,他们深入讨论了技术,并在相对较小的通用航空 (GA) 私人包机业务背景下转述了人为失误事件。该研究回顾了技能、知识和基于规则的错误 (SKR) 的传统人为失误模型,并揭示了 SKR 人为失误模型中缺失的一环,并提出了对该模型的更新,其中包括一个与人类在未来创新的安全关键工作场所中面临的高科技工作世界相关的元素。关键词:人为失误、错误、安全关键工作场所、技术、创新、人力资源开发简介
潜在用药错误 拉莫三嗪的用药错误时有发生。特别是,拉莫三嗪这个名称可能会与其他常用药物的名称混淆。拉莫三嗪的不同剂型之间也可能出现用药错误。为减少用药错误的可能性,请清楚地写出和念出拉莫三嗪。为避免使用错误药物或剂型的用药错误,应强烈建议患者每次取药时目视检查药片以验证它们是否为拉莫三嗪,以及拉莫三嗪的剂型是否正确。 心血管 Brugada 型心电图 据报道,接受拉莫三嗪治疗的患者出现致心律失常 ST-T 异常和典型的 Brugada 心电图模式。患有 Brugada 综合征的患者应慎重考虑使用拉莫三嗪。
船舶是大多数国家维持海洋经济最重要的交通工具。海岸巡逻是国家防止走私和其他危险沿海活动的重要任务。然而,船上人员和海岸警卫队人员在海中溺亡的不幸事故时有发生。为了挽救落海人员的生命,大多数国际搜寻是通过卫星搜寻、直升机救援和派遣船只进行的。这些不仅耗时而且效率低下。为此,我们在本文中提出了一种落水人员(MOB)实时报警、动态全球定位系统(GPS)跟踪和监控系统。该系统由可穿戴传感辅助设备、模块化远程接入点 (LoRa AP)、物理电围栏和中央控制系统四部分组成,以及三种检测和防范 MOB 的方法。这些方法包括使用可穿戴传感辅助设备实时通知 MOB、基于船舶大小的虚拟电围栏监控以及由船舶周围的物理电围栏触发的即时通知。如实验室测试和实际海上测试所示,本研究开发的三种 MOB 传感方法可以执行即时检测和通知操作。因此,我们展示了一种由失事船舶本身实时检测 MOB 并及时提出救援行动的方法。
尽管 30 多年来,烟火装置一直是航空航天计划中许多关键机械功能成功的关键,但地面和飞行中故障仍然时有发生。后续调查显示,在衡量系统变量对性能的影响或确定功能裕度方面,几乎没有或根本没有定量信息。以下三个例子进一步证实了这些观点。1976 年,在维京登陆器计划中,用于在火星表面成功部署天线的拔销器设计在 1986 年的第二次应用中失败,随后被放弃。在 1984 年的地面试验中,航天器分离接头失败,而此前该接头已成功飞行了 20 多年;1994 年,在从航天飞机货舱释放有效载荷期间,该接头发生爆裂。 20 世纪 60 年代早期为双子座计划设计的“完全合格”阀门设计,在 1994 年因之前未识别的故障模式而出现结构故障并点燃了肼。显然需要改进烟火设计、开发和鉴定指南。
安全是航空公司最关心的问题,虽然随着飞机设计和制造技术的发展,航空事故发生率有所下降,但航空事故仍然时有发生。波音公司的报告[1]显示,1959年至2002年,全球共发生1421起航空事故(包括地面试飞事故),而2003年至2012年则下降到407起。航空事故数量虽然明显下降,但是事故数量本身仍然过多,几乎每年发生4起。因此,必须采取措施,进一步减少航空事故。首先,要研究航空事故发生的原因。21世纪,航空制造业发展迅速,由设计和制造缺陷引起的航空事故明显减少,而现在的航空事故主要由人为因素引起,根据国际航空运输协会(IATA)的统计,大约80%的航空事故是由于人为的不安全行为引起的[2]。航空维修是航空安全中的重要环节之一,航空维修中的人为失误也是造成航空事故的重要原因[3]。因此,航空维修中的人为因素模型被提出很多,如“壳”模型[4,5]、“原因”模型[6,7]和“梨”模型[8,9]。“壳”模型以人机工程学为基础,“原因”模型注重组织的重要性,“梨”模型注重组织的重要性。
船舶是大多数国家维持海洋经济的最重要运输工具。海岸巡逻是国家防止走私和其他危险沿海活动的一项重要任务。然而,船上人员和海岸警卫队人员溺水身亡的不幸事故时有发生。为了挽救落海人员的生命,大多数国际搜救都是通过卫星搜救、直升机救援和派遣船只进行的。这些方法不仅耗时,而且效率低下。为此,我们在本文中提出了一种实时报警、动态全球定位系统 (GPS) 跟踪和监控落水人员 (MOB) 的系统。该系统由四部分组成:可穿戴传感辅助设备、模块化远程接入点 (LoRa AP)、物理电围栏和中央控制系统,以及三种检测和防范 MOB 的方法。这些方法包括使用可穿戴传感辅助设备实时通知 MOB、基于船舶大小的虚拟电围栏监控以及由船舶周围的物理电围栏触发的即时通知。实验室测试和实际海上测试表明,本研究开发的三种 MOB 感知方法可以执行即时检测和通知操作。因此,我们展示了一种由失事船舶本身实时检测 MOB 并及时提出救援行动的方法。
摘要 — 电池供电的应用已遍布世界各地,从耗电的电动汽车到低功耗的智能终端和嵌入式设备。与此同时,电池膨胀、起火和爆炸等严重事故时有发生,造成了巨大的经济损失甚至生命损失。人们过去常常将此类后果归咎于无意的设计错误或原始电池制造商的质量检验不足。然而,考虑到错综复杂的电池供应链和电池管理系统 (BMS) 扩展的网络物理攻击面,这种说法如今已不再公平。在本文中,我们将重点关注普遍存在的 (锂离子) 电池实例的真实性和保证。我们通过对当代电池供应链进行建模并深入讨论每个阶段的重新包装和回收等实际问题来研究电池的真实性。至于电池保证,我们考虑了可能危及微电子 BMS 的机密性、完整性和可用性的新兴攻击媒介。此外,我们还重点介绍了现实世界的攻击示例,以反映高级对手的能力。此外,我们还提出了检测和避免对电池真实性和保证性威胁的有希望的对策,以便研究人员能够深入了解如何解决/缓解该问题。我们还提供了对电池系统脆弱性及其后续影响的看法,以及对潜在对策技术的看法。
• 安全第一。设计时应尽量降低对员工和公众的风险。仅靠可靠的饮用水和适当的污水收集来保障公众健康是不够的。SPU 员工将操作和使用您设计的每个设施。所有这些活动都存在固有风险。 • 为系统而设计。了解公用事业系统将如何响应项目。避免解决一个问题而产生另一个问题。 • 为现在和未来而设计。尽可能为系统灵活性而设计。有时无法预测未来的需求。或者,从经济角度来看,为未来客户或系统需求承担当前成本是可取的。谨慎地做出并记录每个设计选择。考虑当前和未来的客户、运营商、工程师和承包商。 • 确定并尽量减少生命周期成本。确定生命周期成本以评估最经济的替代方案;通常(但并非总是)这意味着选择生命周期成本最低的替代方案。考虑资产的整个生命周期:建设、运营、维护、维修、更换和处置。 • 尽量减少责任。设计时应尽量减少对生命和财产的损害。事故时有发生。有时,就像在电表盖上滑倒一样常见。有时,雨水很大,水沟被树叶堵塞。问一些问题,例如,水会流向哪里?谁会受到伤害?未来该地区还会发生哪些变化? • 保护环境。每一步都要质疑你的行为所产生的影响
空间定向障碍 (SD) 是一种病症,其特征是操作员无法在由地球表面和重力垂直线提供的固定坐标系内正确感知飞行器或其自身的位置、姿态或运动。自动力飞行诞生之初,SD 就一直困扰着飞行员,尽管人们已经了解了 SD 的原因,改进了空间定向信息的显示,并更加重视 SD 培训,但主要归因于 SD 的事故仍然时有发生。与过去 30 年来逐步下降的整体事故率相比,SD 事故率在过去 15 年中基本保持不变。这似乎至少部分归因于新技术的引入,例如夜视镜,这些技术使飞行员能够在以前不可能的环境中操作。鉴于在打击 SD 方面明显缺乏进展,以及人员伤亡和飞机损失不断,人为因素和医学小组 (HFM) 认为,鉴于新兴技术和科技可能不仅适用于飞行中的 SD,还适用于其他军事环境,因此有必要重新审视 SD 主题。由此产生的研讨会题为“军用车辆中的空间定向障碍:原因、后果和治疗方法”,于 2002 年 4 月 15 日至 17 日在西班牙拉科鲁尼亚举行,会上进行了 1 次主题演讲、32 次口头演讲和 14 次海报展示