摘要:随着沉浸式计算设备的出现,自我中心感知迅速发展。人类注视预测是分析自我中心视频的一个重要问题,主要通过基于显着性的建模或高度监督的学习来解决。我们定量分析了监督深度学习模型在看不见的域外数据的自我中心注视预测任务中的泛化能力。我们发现它们的性能高度依赖于训练数据,并且仅限于训练注释中指定的域。在这项工作中,我们解决了在不使用任何训练数据的情况下联合预测人类注视点和自我中心视频时间分割的问题。我们引入了一个无监督的计算模型,该模型汲取了事件感知的认知心理学模型的灵感。我们使用 Grenander 的模式理论形式来表示时空特征,并将惊讶建模为预测注视点的机制。对两个公开数据集(GTEA 和 GTEA+ 数据集)的广泛评估表明,所提出的模型可以显著超越所有无监督基线和一些监督凝视预测基线。最后,我们表明该模型还可以对以自我为中心的视频进行时间分割,其性能可与更复杂、完全监督的深度学习基线相媲美。
摘要。对脑电图数据进行分类对于脑机接口 (BCI) 及其应用的性能至关重要。然而,由于其生物性质和复杂的数据收集过程,外部噪声往往会阻碍脑电图数据。特别是在处理分类任务时,标准脑电图预处理方法会从整个数据集中提取相关事件和特征。然而,这些方法对所有相关的认知事件一视同仁,忽视了大脑随时间的动态特性。相反,我们受到神经科学研究的启发,使用一种新方法,该方法集成了脑电图数据的特征选择和时间分割。在 EEGEyeNet 数据集上进行测试时,我们提出的方法显著提高了机器学习分类器的性能,同时降低了它们各自的计算复杂度。
摘要 - 机器人灵巧的手负责抓握和灵巧的操纵。电动机的数量直接影响了此类系统的敏捷性和成本。在本文中,我们提出了Muxhand,这是一种使用时间分割多路复用电动机(TDMM)机制的机器人手。该系统允许仅4电动机独立控制9条电缆,从而显着降低了成本,同时保持高敏度。为了提高抓握和操纵任务期间的稳定性和平滑度,我们将磁接头整合到了三个3D打印的手指中。这些关节具有出色的影响力和自我测量能力。我们进行了一系列实验,以评估Muxhand的抓握和操纵性能。结果表明,TDMM机制可以精确控制连接到手指接头的每个电缆,从而实现强大的抓握和灵活的操作。此外,指尖载荷能力达到1.0 kg,磁接头有效地吸收了冲击和校正未对准而不会损坏。
使用深度学习(DL)的新机器学习方法(ML)超过时间系列模型,通常比传统的ML算法更准确。但是,这些相同的模型(DL)是其缺点,因为它花了大量时间来训练它们在其超偏见的复杂定制任务中。可以看出,使用包装技术(RF)和增强(GBM)的另一种强大的ML方法(即随机森林(随机森林-RF)和梯度增强机)的关注较少。它们的计算量较高,而不是时间串联模型,超出了超级保障者的自定义活动的复杂程度远不那么复杂。鉴于此发现,选择了其中两种 - 随机森林和LightGBM,因为它们代表了强大的方法,并且可以有效地捕获数据中的复杂非线性模式。从对这些技术的分析中,我们试图建立一种方法,以系统地获取一种能够协助分析师参与决策过程的工具,以了解投资,赚钱或等待和得出有关在巴西市场中潜在使用机器学习技术的结论,从而提出了推荐的推荐实践和/或/或/或/或/或/或/或/或/或/或/或/或/或/或/或/或/或/或/或/of。首先,进口的数据分区分为三组(培训,验证和测试),并且采用了两种数据分离方法:一种使用数据的时间方面和另一个随机除法。该过程遵循数据收集和存储步骤,价格序列的处理和归一化,串联属性的分析,从原始属性创建新属性,使用预测模型以及结果分析。值得注意的是,数据还使用描述为时间栏的方法的自定义标记。总而言之,考虑到所研究的问题,尽管随机分裂具有更有效的措施,这与使用时间分割有关。关于算法,LGBM证明了它的效果更好。
摘要 简介 妊娠期糖尿病 (GDM) 是一种常见但高度异质性的疾病。如果能够计算出单个 GDM 女性发生不良妊娠结局的绝对风险,就可以对高危女性实施预防和治疗干预,从而使低风险女性免于不必要的治疗。GDM 女性风险分层护理预测 (PeRSonal GDM) 研究将开发、验证和评估 GDM 女性不良妊娠结局预测模型的临床效用。 方法与分析 我们进行了形成性研究来概念化和设计预测模型。基于这些发现,我们将采用回顾性队列设计进行模型开发和验证研究,参与者数据作为三家医院常规临床护理的一部分收集。该研究将包括 2017 年 7 月 1 日至 2018 年 12 月 31 日期间所有诊断为 GDM 的妊娠(估计样本量为 2430 例)。我们将使用时间分割样本开发和验证策略。将拟合多变量逻辑回归模型。将评估此模型的性能,并使用决策曲线分析评估经过验证的模型。最后,我们将探索适合临床使用的模型呈现方式,包括电子风险计算器。 伦理与传播 本研究已获莫纳什健康人类研究伦理委员会批准 (RES-19–0000713 L)。我们将通过在科学会议上的演示和在同行评审期刊上发表来传播结果。 试验注册详情 系统评价程序这项工作已在 PROSPERO(CRD42019115223)上注册,该研究已在澳大利亚和新西兰临床试验注册中心(ACTRN12620000915954)上注册; 前期结果。