b' 在本研究中,我们报告了超快速瞬态热带 (THS) 技术用于测量氮化铝 (AlN) 薄膜各向异性热导率的实现情况。AlN 薄膜是通过在硅基板上制备的氧化硅 (SiO 2 ) 薄膜上在低温 (> 250 C) 下生长的反应性直流磁控溅射制备的。使用产生超短电脉冲\xc2\xad ses 的实验装置对热导率进行精确测量,并在纳秒和微秒时间尺度上电测量随后的温度升高。在 AlN 加工之前,将电脉冲施加在 SiO 2 上图案化的金属化条带内,并在 [0.1 \xe2\x80\x93 10 \xce\xbc s] 范围内选择的时间段内分析温度升高。当厚度从 1 \xce\xbc m 增加到 2 \xce\xbc m 时,AlN 横向平面(平面内)热导率分别从 60 增加到 90 W m 1 K 1(33 \xe2\x80\x93 44 W m 1 K 1)。这清楚地表明了 AlN 薄膜热导率的各向异性。此外,AlN 的体积热容量估计为 ~2.5 10 6 JK 1 m 3 。'
神经活动和行为来自多个并发的时变系统,包括神经调节,神经状态和历史;但是,大多数当前方法将这些数据建模为具有单个时间尺度的一组动力学。在这里,我们通过Hy Pernetworks(Tidhy)开发了Ti Mescale d emixing,作为一种新的计算方法,用于建模临时数据,将它们分解为多个同时的潜在动力学系统,这些动力系统可能跨越刻板级的阶数不同的时间表。具体来说,我们训练一个超网络以动态重新重新获得潜在动力学的线性组合。此方法可以实现准确的数据重建,收敛到真正的潜在动力学并捕获多个变化的时间尺度。我们首先证明Tidhy可以从包含多个独立开关线性动力学系统的合成数据中删除动力学和时间尺度,即使观察结果混合在一起。接下来,使用模拟的运动行为数据集,我们表明tidhy准确地捕获了运动运动学的快速动力学和不断变化的地形的缓慢动力学。最后,在开源的多动物社会行为数据集中,我们表明用Tidhy提取的关键点轨迹动力学可用于准确识别Multiple小鼠的社交行为。综上所述,Tidhy是一种强大的新算法,用于将同时的潜在动力系统与不同的计算域应用。
•Lindborg,T.,Thorne,M.,Andersson,E.,Becker,J.,Brandefelt,J.,Cabianca,T.,Gunia,M.,Ikonen,A.T.K.,Johansson,E.,Kangasniemi,v. Kuntula,A.,Kupia,P.,Lahden,A.M. Walkes,R.,Xu,S.,Smith,G。&Prruhl,G。:CCOSUSE后的Safetys或Solid Radioactives或计划或计划或IAEA,IAEA,期刊或环境重新行动中的Changle和Landcape Development的气候。183,41-53,2018。
摘要 — 可再生能源的发展强调了对储能系统 (ESS) 的需求,以减轻这些能源的不可预测性和多变性,但高投资成本、零星使用和需求不匹配等挑战阻碍了它们的广泛应用。作为回应,共享储能系统 (SESS) 提供了更具凝聚力和更高效的 ESS 使用方式,提供了更易于访问且具有成本效益的储能解决方案来克服这些障碍。为了提高 SESS 的盈利能力,本文设计了一种基于长期合同和实时租赁商业模式的多时间尺度资源配置策略。我们首先为 SESS 构建了一个生命周期成本模型,并介绍了一种通过 SESS 内的循环次数和放电深度来估算多个电池组的退化成本的方法。随后,我们从容量和能量的角度设计了各种长期合同,建立了关联模型和实时租赁模型。最后,提出了基于用户需求分解的多时间尺度资源分配。数值分析验证了基于长期合同的商业模式在经济可行性和用户满意度方面优于单纯在实时市场中运营的模式,有效降低了电池的退化,并且利用SESS的聚合效应可以额外增加10.7%的净收入。
皮质回路的许多解剖和生理特征,从突触的生物物理特性到不同神经元类型之间的连接模式,都表现出从感觉区域到联想区域的层级轴的一致变化。值得注意的是,静息状态下神经活动的时间相关性尺度(称为内在时间尺度)在灵长类动物和啮齿动物中都沿着这一层级系统地增加,类似于空间受体场的规模和复杂性不断增加。然而,任务相关活动的时间尺度如何在大脑区域间变化,以及它们的层级组织是否在不同哺乳动物物种中一致出现仍未得到探索。在这里,我们表明,内在时间尺度和任务相关活动的时间尺度在猴子、大鼠和小鼠的皮质中都遵循类似的层级梯度。我们还发现,这些时间尺度在皮层和基底神经节中以类似的方式共同变化,而丘脑活动的时间尺度比皮层时间尺度短,并且不符合其皮层投影预测的层次顺序。这些结果表明,皮层时间尺度的层次梯度可能是哺乳动物大脑皮层内回路的普遍特征。
免责声明这一信息是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,或其任何雇员均未对任何信息,设备,产品或过程披露或代表其使用将不会侵犯私人拥有的私有权利。参考文献以商品名称,商标,制造商或其他方式指向任何特定的商业产品,流程或服务,并不一定构成或暗示其认可,建议或受到美国政府或其任何机构的支持。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
初级运动皮层 (M1) 的潜在动力学模型揭示了运动控制背后的基本神经计算;然而,这种模型往往忽略了感觉反馈的影响,感觉反馈可以不断更新皮层动力学并纠正外部扰动。这表明迫切需要对感觉反馈和内在动力学之间的相互作用进行建模。这种模型还有利于实时解码神经活动的脑机接口 (BCI) 的设计,其中用户学习和熟练控制都需要反馈。在这里,我们研究了皮层动力学的灵活反馈调节,并展示了它对 BCI 任务性能和短期学习的影响。通过在简单的 2D 到达任务(类似于 BCI 光标控制)上使用实时感觉反馈训练循环网络模型,我们展示了如何将以前报告的 M1 活动模式重新解释为由反馈驱动的动力学引起的。接下来,通过在 M1 上游加入自适应控制器,我们做出了一个可测试的预测:除了 M1 内循环连接的可塑性之外,M1 输入的可塑性(包括感官反馈的重新映射)还促进了新 BCI 解码器的短期学习。这种输入驱动的动态结构还决定了适应速度和学习成果,并解释了学习变异性的连续形式。因此,我们的工作强调了对运动控制的输入相关潜在动力学进行建模的必要性,并阐明了学习限制是如何从神经活动的统计特征和底层动态结构中产生的。
行为的连续性要求动物在相互排斥的行为状态之间平稳过渡。控制这些转变的神经原理尚不清楚。秀丽隐杆线虫自发地在两个相反的运动状态(向前和向后运动)之间切换,这种现象被认为反映了中间神经元 AVB 和 AVA 之间的相互抑制。在这里,我们报告说,自发运动及其相应的运动回路不是单独控制的。AVA 和 AVB 既不是功能等效的,也不是严格相互抑制的。AVA 而不是 AVB 保持去极化的膜电位。虽然 AVA 在快速时间尺度上阶段性地抑制了正向促进中间神经元 AVB,但它在较长的时间尺度上保持了对 AVB 的紧张性、突触外兴奋。我们提出,AVA 在不同时间尺度上具有相反极性的紧张性和阶段性活动,充当主神经元,打破了底层正向和反向运动回路之间的对称性。该主神经元模型为由互斥的运动状态组成的持续运动提供了一种简约的解决方案。
•量子信息处理需要纠缠量子A和b•如果两个光子到达同一检测器时,则达到纠缠 - 但是只有两个光子无法区分:相同的颜色,相同的颜色,相同的到达时间•在实践中:必须在0.1纳米秒内进行光子发射时间:
确定材料密度ρ和纵向应力p(在静液压极限)后面,后面是一维稳态冲击。这种实验揭示了从速度测量的人类经验(数千至数百万个气氛)的材料条件。光子多普勒速度(PDV)[2,3]是一种光学技术,用于跟踪速度从小于1 m s-1到10 km S-1以上。诊断在概念上很简单,但对于许多应用来说是完全不切实际的,直到二十一世纪开始[4,5]。本文考虑了PDV测量方法是如何通过实验时间尺度定义的。PDV的关键原则 - 在技术,基本分析及其收益的范围内,已在第2节中进行了描述。第3节通过使用PDV的实验时间尺度进行旅行。第4节总结了当前状态