可以克服并模拟数千原子的系统,以获取纳秒级的时间尺度。的确,MLP允许以第一条原理方法成本的一小部分进行从头启动 - 质量的MD模拟。在这种方法中,按照Behler和Parrinello率先提出的策略,36通过神经网络(NN)对原子间的相互作用进行建模,该神经网络(NN)经过训练,可以忠实地预测一套参考文献con的dft计算获得的能量和力量。为了进行反应性过程的准确性,因此,最重要的是,训练数据集不仅包含来自亚稳态状态的采样的低能量结构,而且还包括跨性别状态的情况。不幸的是,对于复杂的系统(例如液体硫),由于存在大型自由能屏障,大多数反应性事件都是在时间尺度上发生的,远远超过了在标准MD模拟中可访问的,因此无法采样。幸运的是,ES方法旨在克服这一限制,并允许在可行的计算时间中对罕见事件进行采样。许多这样的方法基于
非时序关联 (OTOC) 和纠缠是两种物理上被广泛使用的量子信息“扰乱”探测方法,这种现象最近在量子引力和多体物理学中引起了极大的兴趣。我们认为,相应的扰乱概念可能存在根本区别,方法是证明在具有严格瓶颈的图(如树形图)上定义的随机量子电路模型中,OTOC 饱和的时间尺度和纠缠熵的时间尺度之间存在渐近分离。我们的结果与直觉相反,即随机量子电路的混合时间与底层相互作用图的直径成正比。它还为我们之前工作中的一个论点 [Shor PW,Schwarzschild 黑洞光子球的扰乱时间和因果结构,arXiv:1807.04363 (2018)] 提供了更严格的依据,即黑洞可能是慢速信息扰乱器,这反过来又与黑洞信息问题有关。我们获得的 OTOC 界限本身就很有趣,因为它们以严格和通用的方式将之前对格子上 OTOC 的研究推广到图上的几何。
摘要。体力活动对人患 2 型糖尿病的影响是多方面的。常微分方程组在模拟这一进程中至关重要。然而,这样的模型通常在多个时间尺度上运行,这使得它们在模拟长期影响时计算成本高昂。为了克服这个问题,我们提出了一个双时间尺度模型的均质化版本,该模型可以捕捉体力活动对血糖调节的短期和长期影响。通过将体力活动会话的均质化贡献引入长期影响,我们将整个模型从 12 个状态变量减少到 7 个,同时保留了其关键动态。均质模型提供了超过 1000 倍的计算速度,因为数值求解器可以在长期影响的尺度上采取时间步骤。我们证明均质化引入的误差随时间有界,并通过模拟研究验证了理论结果。计算时间的大幅减少为同质化模型在医疗决策支持系统中的应用打开了大门。它支持制定个性化的体育锻炼计划,从而有效降低罹患 2 型糖尿病的风险。
可以在较短的时间尺度上实现生产吞吐量,而无需增加容量。标准调度过程通常不会考虑现实世界的活跃物质,例如设置配置,换档时间和维护日历的变化,这可能导致效率低下的构建时间。通过准确建模全价链,Palantir Foundry可以优化产品组合,生产计划和维护时间,以充分利用现有容量。
哺乳动物大脑的功能组织可以被认为是一种分层控制结构,但这种复杂系统是如何在进化过程中出现并在发育过程中构建的仍然是一个谜。在这里,我们通过约束闭包框架来考虑大脑组织,约束闭包被视为生命系统的一般特征,即它们由多个子系统组成,这些子系统在不同的时间尺度上相互约束。我们通过开发一种新的约束闭包形式来实现这一点,这种形式受到先前模型的启发,该模型展示了生命周期内动态如何约束生命周期间动态,并且我们展示了这种相互作用如何推广到多层系统。通过这个模型,我们在两个主要的约束闭包例子——生理调节和视觉定向的背景下考虑大脑组织。我们的分析引起了人们对分层大脑结构在多个时间尺度上自我支撑的能力的关注,包括皮质过程限制皮层下过程进化的能力,以及后者限制皮层系统自我组织和完善的空间的能力。本文是“通过进化论的视角看系统神经科学”专题的一部分。
我们提出了一种新的量子绝热定理,该定理允许人们严格限制多种系统的绝热时间尺度,包括最初由最初无界的汉密尔顿人描述的系统,这些系统被截止使有限量化。我们的界限适合超导电路的量子近似值,并提出了一个足够的条件,可在N量子位的电路模型的2 n维Qubit子空间中保留。这种绝热定理的新颖性是,与以前的严格结果不同,它不包含2 n作为绝热时间尺度的一个因素,并且它允许人们获得二十岁时间尺度的表达,而与吉尔伯特巡回赛的少量二维希尔伯特空间无关。作为一种应用,我们提出了该时间尺度对超导频率Qubit的电路参数的明确依赖性,并证明从Qubit子空间中泄漏出来是不可避免的,因为隧道屏障在量子末期末端升高。我们还讨论了获得2 N×2 N有效哈密顿量的一种方法,该方法最能近似于缓慢变化的电路控制参数引起的真实动力学。本文是主题问题的一部分“量子退火和计算:挑战和观点”。
1。房东有租户参与策略2。房东向租户提供良好的信息3。有有效的租户参与结构和参与方法4。租户参与决策5。房东与租户合作6。租户参与监视房东的绩效7。有足够的资源和支持以使租户参与8。员工对租户参与的认识很高9。房东有现实的时间尺度租户参与10。房东致力于促进均等机会
该课程将全面概述冰冻圈在无缝预测和气候系统建模中的复杂作用。冰冻圈影响天气和气候模式、海洋环流以及水文循环。它在气候反馈机制中发挥着关键作用,并在季节至十年的时间尺度上充当水和能量的储存器。将冰冻圈数据和过程纳入气候模型对于提高气候预测和预估的准确性和可靠性至关重要。
神经活动包含与认知相对应的丰富的时空结构。这包括跨越大脑区域网络的振荡爆发和动态活动,所有这些都可能在几十毫秒的时间尺度上发生。虽然这些过程可以通过脑记录和成像来访问,但由于其快速和短暂的性质,对其进行建模在方法上存在挑战。此外,有趣的认知事件的确切时间和持续时间通常是先验未知的。在这里,我们介绍了 OHBA 软件库动力学工具箱 (osl-dynamics),这是一个基于 Python 的软件包,可以在几十毫秒的时间尺度上识别和描述功能性神经成像数据中的递归动态。其核心是机器学习生成模型,这些模型能够适应数据并在几乎不做假设的情况下学习大脑活动的时间以及空间和光谱特征。 osl-dynamics 采用了最先进的方法,这些方法可以(并且已经)用于阐明各种数据类型中的大脑动力学,包括磁/脑电图、功能性磁共振成像、侵入性局部场电位记录和皮层脑电图。它还提供了大脑动力学的新颖总结测量方法,可用于帮助我们理解认知、行为和疾病。我们希望 osl-dynamics 能够通过增强快速动态过程建模的能力,进一步加深我们对大脑功能的理解。
超短激光脉冲是诱导材料改性的有力工具 1–4。特别是在透明电介质中,超短激光脉冲可用于局部修改材料块内的化学结构、折射率、色心密度,光聚合,产生纳米光栅、表面纳米结构或内部空隙。大量应用领域受益于基础性进步:外科和生物医学应用、光子学、微流体学、高速激光制造 2,5–7。将这些应用推进到纳米结构需要数值建模的支持 8。在激光诱导的强场下,束缚电子从价带跃迁到导带 1,9,10,在价带中留下一个空穴。电子-空穴等离子体的粒子在激光场中被加速,通过碰撞电离导致自由载流子密度倍增,并可能产生致密的电子-空穴等离子体。最后,在远大于几皮秒的时间尺度上,材料内部发生热和结构事件 1 。我们的模型侧重于等离子体密度的积累,时间尺度可达几皮秒。已经开发了大量不同的模型来研究超短激光脉冲(约 100 fs)在高强度范围内(约 10 14 W/cm 2 )在介电体中的传播以及随后的电离。这些模型可分为两类。第一类是几种