通过DNA吸收紫外线是细胞氧化损伤的主要来源,引发了一系列对生物体的可能非常有害结果的分子事件(DNA突变,凋亡和癌症)。1 - 3,因此,巨大的效果已致力于表征多核苷酸的光活化动力学。归功于时间分辨(TR)光谱技术4 - 6的发展以及量子机械(QM)计算的限制,已经取得了7 - 10个重要的进步,尤其是在模型多核苷酸序列的研究中。7 - 9,11 - 13他们的光活化动力学非常复杂,结合了超高过程,其特征是亚匹克秒(PS)中的时间常数多达几个PS,而其他过程则以较低的时间尺度出现,最高为纳米秒(NS)(NS)及以后。最快的过程通常与单体样衰减过程有关,即类似于孤立基地中发生的,而,而
摘要:将量子信息确定性地加载到量子节点上是迈向量子网络的重要一步。本文,我们证明具有最佳时间波形的相干态微波光子可以有效地加载到半无限一维 (1D) 传输线波导中的单个超导人造原子上。使用具有指数上升波形的弱相干态(脉冲中包含的光子数 (N) ≪ 1),其时间常数与人造原子的退相干时间相匹配,我们证明从 1D 半自由空间到人造原子的加载效率为 94.2% ± 0.7%。高加载效率归因于时间反转对称性:入射波和时间反转的发射波之间的重叠高达 97.1% ± 0.4%。我们的研究结果为实现基于波导量子电动力学的量子网络开辟了有希望的应用。关键词:量子网络,光子加载,波导量子电动力学,超导人工原子Q
摘要我们演示了超导的单光子检测器(SPD),这些检测器(SPD)在每个像素上本地集成了信号。通过超导纳米线SPD与Josephson Electronics的单片整合来实现此能力。动机是实现具有类似于CMOS传感器对应物的集成功能的超导传感器元素。像素可以以多种模式运行。首先,我们证明可以单独计数光子,每个检测事件添加了相同数量的超频率与集成元素。第二,我们演示了一个活动增益控制选项,其中可以动态调整每个检测事件的信号以说明可变光条件。此外,像素可以无限期地保留信号以记录在集成周期内发生的所有计数,或者像素可以在衰减时间常数中记录检测事件的褪色信号。我们描述了其他半导体读数电路,该电路将在以后的工作中使用,以实现与CMOS阵列读取体系结构兼容的超导SPD的可扩展的大型传感器阵列。
摘要 — 我们研究海上风电场的最佳能源管理,该风电场结合了“过度种植”(生产量超过输电能力)、“动态热额定值”(DTR,由于输出电缆周围土壤的热惯性大,瞬时输出量超过稳态输电能力)和能量存储(以减轻限电和预测误差)。这种前瞻性的设置旨在进一步降低海上风电的平准化能源成本,它产生了一个具有时间耦合和不确定输入的优化问题。这个能源管理问题的困难在于,由于电缆周围的热惯性,时间常数相差几个数量级。我们提出了一种基于随机动态规划 (SDP) 的大型 GPU 实现的近似解决方案。在我们的性能比较中,SDP 优于更简单的基于规则的能源管理方案,同时我们还探讨了 DTR 在过度种植背景下的好处。索引术语 — 过度种植、动态热额定值、能量存储、最佳能源管理、随机动态规划
摘要BrainScales的第一代,也称为Brainscales-1,是一种用于模拟尖峰神经元网络的神经形态系统。按照“物理建模”原理,其VLSI电路旨在模拟生物学示例的动力学:模拟回路与其电子组件的内在特性产生的时间常数实现神经元和突触。与生物学状态相比,它连续运行,动力学通常匹配10 000。尽管不可避免的模拟可变性和组件故障,但容忍故障设计使其能够实现晶圆尺度的集成。在本文中,我们介绍了Brainscales-1晶圆模块的调试过程,提供了对系统物理组件的简短描述,说明了其组装过程中采取的步骤以及对其进行操作所采取的措施。此外,我们反思了系统的开发过程以及所学到的经验教训,通过模拟晶圆尺度同步释放链来证明其功能,这是迄今为止最大的尖峰网络仿真,迄今为止,最大的尖峰网络模仿和单个突触。
2。瞬时短路电流贡献(对故障水平的贡献):如果短路(电压的步骤变化),点1中描述的补偿电流有助于短路电流。通过有效的网格阻抗和断层阻抗以及整个系统的其他阻抗,在短时范围内确定了时间常数,相位位置和幅度。在短时范围之外,如果仍然存在故障条件,则可以根据特征曲线或可调节的系统特征以受控方式提供转换器电流的正顺序。第一响应与更高级别特征之间的过渡必须不间断,并且尽可能无震动。或者,在短时范围之外,转换器可以继续作为阻抗背后的电压源。快速电流限制以保护系统 - 例如发生故障,残留电压低(接近系统接近的短路) - 是允许的,并且不得导致同步损失。当前限制必须在其优先级方面参数化(例如true-ny-ny-try-ny-the Active或Reactive电流上的优先级)。在不对称网格故障的情况下,还需要针对计数器系统的定义系统行为。
摘要 — 采用 96 字线层技术开发了一款 128 Gb 1 位/单元 3-D 闪存芯片。一种具有较少字线和位线时间常数的新型芯片布局结构实现了快速读取访问时间。新引入的程序序列即使在写入/擦除循环后也能实现更高的可靠性和更少的读取重试。还采用了外部 VPP 电源 (12 V)、电流模式参考分布和自动温度代码刷新来提高芯片的性能。新的占空比校正器成功获得了更宽的 DQS 单位间隔。因此,所提出的芯片具有 4 µ s 的读取访问延迟和 75 µ s 的编程时间,比采用相同技术的传统 3-D 闪存快 12-13 倍和 4-5 倍 [Maejima et al. , (2018)]。随机读取延迟(tRRL)估计小于 50 µ s,这使得能够减少固态硬盘(SSD)系统的总读取访问时间。
摘要:通过结合不同储能技术的优势,混合储能系统(HESS)可以满足生产系统的多重要求。但是,HESS所需的能力大于单重量储能系统(ESS)的所需能力。本文研究了由低通滤波器控制器的相移及其对HESS的相关影响引起的HESS内部能量交换。结果表明,不必要的能源交换会导致超大容量和增加的能量损失。此外,低通量过滤器控制器的时间常数增加导致更大的相移,进一步导致了总容量和能量损失的增加。此外,本文比较了单电池ESS,电池使用电池电容器HESS和在家庭杂货系统中实施的电池型电池hess以及可再生能源(RES)。ESS组合的比较证明了它们的功率流量之间的差异,其单个储能设备(ESD)所需的容量,能源损失,电池寿命和项目成本。结果表明,应仔细地进行技术经济分析,以选择适当的ESS解决方案,以适合家庭杂货系统。
压电 (PE) 型加速度计 PE 型加速度计响应施加到其压电陶瓷或晶体传感元件上的机械应力,产生高阻抗静电荷输出。由于其高电荷灵敏度,压电陶瓷在电荷和电压模式加速度计中得到广泛应用。石英被公认为所有压电材料中最稳定的材料,也常用于通用 ICP ® 加速度计、校准传递标准以及 PE 压力和力传感器。电荷输出系统已经问世约 40 年。PE 加速度计通过低噪声电缆与高输入阻抗电荷放大器一起工作,该放大器将电荷信号转换为可用的低阻抗电压信号以供采集。电荷放大器提供信号阻抗转换、标准化和增益/范围调整。选项可能包括滤波、速度和/或位移积分以及输入时间常数的调整,这决定了低频响应。现代电荷放大器采用更有效的低噪声电路设计,并可能包含简化的 LCD 显示器和数字控制。一些“双模”型号可同时使用 PE 和 ICP ®
i。在国际单位制中,电感的单位是亨利 (H)。如图 1 所示,通过在线圈内添加由铁磁材料(例如铁)制成的磁芯,来自线圈的磁化通量会在材料中感应出磁化,从而增加磁通量。铁磁芯的高磁导率可以使线圈的电感比没有铁磁芯时增加数千倍 [1]。变形虫等生物表现出原始的学习以及记忆、计时和预测机制。它们的自适应行为可以通过基于忆阻器的 RLC 电路模拟 [2]。受这项工作的启发,我们将设计一种基于忆阻器的神经形态架构,该架构可根据外部刺激频率以自然的方式自行调整其固有谐振频率。与之前的研究相比,我们的创新之处在于,该架构使用独特的记忆电感器来增加其时间常数,然后降低其谐振频率以匹配刺激频率。我们的目的是利用这种架构来帮助更好地研究原始智能的细胞起源。这也是这类研究的意义所在,不仅可以理解原始学习,还可以开发一种新颖的计算架构。