抽象的虚拟现实(VR)提供了一种有力的工具来研究认知过程,因为它允许研究人员在复杂但高度控制的场景中衡量行为和精神状态。使用VR头部安装的显示与诸如EEG之类的生理措施结合使用,提出了新的挑战,并提出了问题,是否已建立的发现是否也推广到VR设置。在这里,我们使用VR耳机来评估两个良好的脑电图短期记忆的EEG相关性的空间约束:对侧延迟活动的幅度(CDA)和保留记忆保留期间诱导的α功率的横向化。,我们在变化检测任务中测试了观察者的视觉记忆,其中具有两个或四个项目的双侧刺激阵列,同时改变了内存阵列的水平偏心率(4、9或14度的视觉角度)。在两个较小的构成处,高记忆负荷之间的CDA幅度有所不同,但在最大的偏心率上没有不同。记忆负荷和偏心率均未显着影响观察到的α侧向化。我们进一步拟合了时间解析的空间过滤器,以从事件相关电位以及其时间频率分解中解码内存负载。在保留间隔期间的分类性能在两种方法中都高于差异水平,并且在偏心率中没有显着差异。我们得出的结论是,可以利用商业VR硬件来研究CDA和侧向化的α功率,并且我们为以VR设置为针对这些视觉记忆的EEG标记的未来研究提供了警告。
大脑计算机界面(BCIS)将大脑活动转化为数字命令,以与物理世界互动。该技术在几个应用领域具有巨大的潜力,从医疗应用到娱乐业,并为认知神经科学的基础研究创造了新的条件。当今的BCIS,仅对用户当前心理状态的原油在线分类,而对精神状态的更复杂的解码取决于耗时的offline数据分析。本文通过利用一组分析管道的改进来直接解决此限制,从而为下一代在线BCI铺平了道路。特别是我们引入了一个开放源研究框架,该框架具有模块化和可定制的硬件设计。此框架促进了人类在循环(HIL)模型培训和再训练,实时刺激控制,并使转移学习和云计算用于脑电图(EEG)数据的在线分类。刺激和研究人员的诊断。使用实验室流层标准和Websocket发送消息。实时信号处理和分类以及机器学习模型的培训,由开源Python包装时间频率促进。框架在Linux,MacOS和Windows上运行。虽然在线分析是BCI-HIL框架的主要目标,但可以通过MNE,EEGLAB或FIELDTRIP(例如Python,Matlab和Julia)对EEG数据进行OfflINE分析。本文描述并讨论了人类在BCI研究平台的理想特性。BCI-HIL框架是根据MIT许可发布的,其示例为:bci.lu.se/bci-hil(或at:github.com/bci-hil/bci-hil)。
摘要 - 建造土壤水分(SM)的气候数据记录(SM)需要通过合并板载不同卫星的传感器的检索来计算长时间序列,这意味着在原始时间序列上执行偏见校正或重新缩放。由于它们的长时间跨度和高时间频率,模型数据可以用作重新缩放的常见参考。但是,某些应用程序需要避免观察性气候数据记录中的模型依赖性。在本文中,讨论了从L -band传感器之一专门设计用于测量SM的L-带传感器之一的参考遥感数据的可能性。高级微波扫描辐射计2 SM时间序列通过将其累积分布函数(CDF)与土壤水分和海洋盐度(SMOS),土壤水分积极被动(SMAP)和全球土地数据同化系统(GLDAS)Noah Noah模型时间序列相匹配,从而重新缩放。CDF计算作为时间序列的函数进行了批准,从四年到九年中发现了显着差异。通过空间差异代替时间不允许我们从短时间序列中计算出更好的CDF。重新定义的时间序列显示高相关性(r> 0。8)相对于参考,原始的偏差(<0.03 m 3·m -3)。还对使用几个SMO或SMAP数据集进行重新缩放的时间序列也针对原位测量进行了评估,并显示出类似于或使用模型GLDAS重新缩放的表演。评估了观察数据的随机误差和差距对重新恢复的影响。这些结果表明,实际上可以将L-带数据用作来自其他传感器的Rescale时间序列的参考来构建SM的长时间序列。
摘要:在这项研究中,表现出亚毫升水平的精度k波段微波范围(MWR)设备,旨在通过空位(Leo Orbit(Leo)中的航天器形成(SFF)验证地球重力场(EGF)和数字高程模型(EGF)和数字高程模型(DEM)。尤其是,本文详细介绍了我们设计和开发的集成Beidou III B1C/B2A双重接收器,包括信号处理方案,增益分配和频率计划。与时间间隔计数器同步解决方案相比,接收器匹配MWR系统的0.1 NS精确同步时间频率基准,并通过静态和动态测试进行了验证。此外,通过使用不同的范围技术,可以深入探索MWR设备范围的精度。测试结果表明,使用同步的双双单向射程(DOWR)微波相蓄积框架,在测试过程中实现了40 µm和1.6 µm/s的精度,并在测试过程中实现了6 µm/s/s的范围速率速率精度。分析了整个MWR系统的范围误差源,而用于SFF相对导航设计的相对轨道动力学模型,用于编队场景的相对轨道动力学模型和自适应KalmanFulter算法。在高精度六个自由度(6-DOF)移动平台中,在硬件(HIL)模拟系统的硬件(HIL)模拟系统中测试了SFF相对导航的性能。使用MWR的自适应相对导航系统的最终估计误差约为0.42 mm(范围/rms)和0.87 µm/s(范围率/rms),这证明了EGF和DEM形成在太空中的未来应用的有希望的准确性。
摘要引入大约40%的晚期痴呆症可以通过解决可修改的危险因素(包括体育锻炼和饮食)来阻止。然而,目前尚不清楚多种生活方式因素如何相互作用以影响认知。激活研究的目的是(1)探索与认知和脑功能变化的24小时时间使用和饮食组成之间的关联; (2)确定时间使用行为的持续时间和饮食组成,以优化认知和大脑功能。方法和分析这项为期三年的前瞻性纵向队列研究将招募448名在澳大利亚阿德莱德和纽卡斯尔的60-70岁的成年人。时间使用数据将通过腕上的活动监测器和儿童和成人的多媒体活动召回来收集。饮食摄入量将使用澳大利亚饮食调查频率问卷进行评估。使用Addenbrooke的认知考试III评估,主要结果将是认知功能。次要结果包括使用MRI,通过弥漫性光学断层扫描测量的脑动脉脉冲,使用同时经跨颅磁刺激和电脑电图测量的神经塑性的结构和功能性脑测量,以及使用事件相关潜在的潜在频率和时间频率分析的认知对照的电生理学标记。组成数据分析,测试时间点和组成之间的相互作用,将评估依赖(认知,大脑功能)与独立(时间使用和饮食组成)变量之间的纵向关联。发现将结论激活研究将是第一个检查时间使用和饮食组成,认知和大脑功能之间关联的研究。我们的发现将为多域干预措施提供新的途径,这些干预措施可能更有效地解释了预防痴呆症的活动和饮食行为之间的共同依赖性。伦理和传播伦理批准已从南澳大利亚大学人类研究伦理委员会(202639)获得。
抽象背景:神经生理信号处理中的一个常见问题是从高维,低样本量数据(HDLSS)中提取有意义的信息。我们提出了Roldsis(低维跨度输入空间的回归),这是一种基于降低性降低的回归技术,将解决方案限制在可用观测值所跨越的子空间中。这避免了收缩回归方法中需要的回归过程中的正则参数。结果:我们将Roldsis应用于语音识别实验中收集的EEG数据。在实验中,连续/da/–/ta/中的变形音节作为声学刺激显示给参与者,并记录与事件相关的电位(ERP),然后通过离散小波转换在时间频率结构域中作为一组特征表示。从参与者执行的初步识别任务中选择每组刺激。身体和心理物理属性与每个刺激有关。roldsis推断与每个属性相关的特征空间中的神经生理轴。我们表明,这些轴可以可靠地估计,并且它们的分离与语音分类的个体强度相关。Roldsis提供的结果在时频域中可以解释,可用于推断语音分类的神经物理学相关性。通过交叉验证进行了与常用的正则回归技术的比较。结论:Roldsis获得的预测误差与脊回归获得的预测误差相当,并且比用Lasso和SPLS获得的预测误差较小。然而,Roldsis无需交叉验证就可以实现这一目标,该程序需要从数据中提取大量观测值,并且在平均试验时,降低了信噪比的降低。我们表明,即使Roldsis是一种简单的技术,它也适用于神经生理信号的处理和解释。关键字:脑电图,事件相关电位,线性回归,高尺寸低样本量问题,尺寸减小,音素分类,离散小波转换
摘要 - 目的:在大多数现有的大脑计算机界面(BCI)系统中,通常会忽略脑电图频谱动力学中隐藏的拓扑信息。此外,脑电图与其他信息性的大脑信号(例如功能性近红外光谱(FNIRS))的系统多模式融合尚未得到充分研究,以增强BCI系统的性能。在这项研究中,我们利用一系列基于图形的EEG特征来研究其在运动假想(MI)分类任务上的性能。方法:我们首先根据复杂的Morlet小波时间频率图提取用户多通道EEG信号的幅度和相位序列,然后将它们转换为无向图以提取EEG EEG拓扑特征。然后通过阈值方法选择基于图的特征,并与FNIRS信号的时间特征融合在一起,每个特征是由最小绝对收缩和选择算子(Lasso)算法选择的。然后,通过线性支持向量机(SVM)分类将融合功能分类为MI任务与基线。结果:与在频带过滤的时间eeg信号上构建的图相比,EEG信号的时频图提高了MI分类精度约5%。我们提出的基于图的方法还显示出与基于功率谱密度(PSD)的经典脑电图特征相当的性能,但是标准偏差较小,显示出在实用BCI系统中潜在使用的稳健性。关键字 - 大脑计算机界面(BCI),EEG-FNIRS数据融合,特征选择,图理论。我们的融合分析显示,与最高的FNIRS相对于单个模态效果相关时,与最高的FNIR相比,仅EEG的最高平均准确性仅为17%,而仅EEG的最高平均精度仅为最高的平均准确性,而最高的FNIRS的平均准确性仅为3%。显着性:我们的发现表明,通过使运动假想推理更加准确,更强大,利用混合BCI系统中基于图的特征的提议数据融合框架的潜在用途。
局部可解释和模型无关解释 (LIME) 是一种可解释的人工智能 (XAI) 方法,用于识别智能磨削过程中预测平均表面粗糙度 (Ra) 的全局重要时频带。智能磨削装置包括一台 Supertech CNC 精密表面磨床,配备一个 Dytran 压电加速度计,沿切线方向 (Y 轴) 安装在尾座主轴上。每次磨削时,都会捕获振动特征,并使用 Mahr Marsurf M300C 便携式表面粗糙度轮廓仪记录地面真实表面粗糙度值。在整个实验中,粗糙度值范围为 0.06 至 0.14 微米。提取磨削过程中收集的每个振动信号的时间频域频谱图帧。建模卷积神经网络 (CNN) 以基于这些频谱图帧及其图像增强来预测表面粗糙度。最佳 CNN 模型能够预测粗糙度值,总体 R2 分数为 0.95,训练 R2 分数为 0.99,测试 R2 分数为 0.81,仅使用 80 组振动信号(对应 4 次实验,每次 20 次试验)。虽然数据量不足以保证在现实场景中达到这样的性能指标,但可以提取这些复杂的深度学习模型捕获的关系背后的统计一致的解释。在开发的表面粗糙度 CNN 模型上实施了 LIME 方法,以识别影响预测的重要时频带(即频谱图的超像素)。基于在频谱图帧上确定的重要区域,确定了影响表面粗糙度预测的相应频率特性。基于 LIME 结果的重要频率范围约为 11.7 至 19.1 kHz。通过基于重要频率范围并考虑奈奎斯特标准将采样率从 160 kHz 降低到 30、20、10 和 5 kHz,证明了 XAI 的强大功能。通过仅提取低于其相应奈奎斯特截止值的时间频率内容,为这些范围开发了单独的 CNN 模型。通过比较模型性能提出了一种适当的数据采集策略,以论证选择足够的采样率来成功且稳健地捕捉磨削过程。© 2023 制造工程师协会 (SME)。由 Elsevier Ltd. 出版。保留所有权利。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)由 NAMRI/SME 科学委员会负责同行评审。关键词:卷积神经网络;可解释机器学习;XML;可解释人工智能;XAI;局部可解释和模型无关解释;LIME;表面粗糙度;表面磨削;光谱图
1。Mullowney D,Fuentes VL,Barfield D.最后一年的兽医学生和近期兽医毕业生,转诊医院兽医和兽医心脏病学家或心脏病学居民的心脏听觉技能。兽医rec。2021; 189(6):E305。2。Wilshaw J,Rosenthal SL,Wess G等。病史,体格检查,心脏生物标志物和生化变量的准确性在患有B2期退化二尖瓣疾病的识别犬中。J VET Intern Med。2021; 35(2):755-770。3。Wesselowski S,Gordon SG,Fries R等。使用体格检查,心电图,放射线照相术和生物标志物预测超声心动图B2 B2粒细胞护丝瓣疾病在临床前骑士国王Charles Spaniels中。J VET Cardiol。 2023; 50:1-16。 4。 ljungvall I,Rishniw M,Porciello F,Ferasin L,Ohad DG。 含粘液丝瓣疾病的小型狗中的杂音性反映了疾病的严重程度。 J小动画实践。 2014; 55(11):545-550。 5。 Caivano D,Dickson D,Martin M,Rishniw M.患有肺部和亚属于下狭窄的成年犬的杂音强度反映了疾病的严重程度。 J小动画实践。 2018; 59(3):161-166。 6。 Keene BW,Atkins CE,Bonagura JD等。 ACVIM共识指南 - 用于诊断和处理狗的粘液丝瓣脱离的线。 J VET Intern Med。 2019; 33(3):1127-1140。 7。 Boswood A,HäggströmJ,Gordon SG等。 8。J VET Cardiol。2023; 50:1-16。4。ljungvall I,Rishniw M,Porciello F,Ferasin L,Ohad DG。含粘液丝瓣疾病的小型狗中的杂音性反映了疾病的严重程度。J小动画实践。2014; 55(11):545-550。 5。 Caivano D,Dickson D,Martin M,Rishniw M.患有肺部和亚属于下狭窄的成年犬的杂音强度反映了疾病的严重程度。 J小动画实践。 2018; 59(3):161-166。 6。 Keene BW,Atkins CE,Bonagura JD等。 ACVIM共识指南 - 用于诊断和处理狗的粘液丝瓣脱离的线。 J VET Intern Med。 2019; 33(3):1127-1140。 7。 Boswood A,HäggströmJ,Gordon SG等。 8。2014; 55(11):545-550。5。Caivano D,Dickson D,Martin M,Rishniw M.患有肺部和亚属于下狭窄的成年犬的杂音强度反映了疾病的严重程度。J小动画实践。2018; 59(3):161-166。6。Keene BW,Atkins CE,Bonagura JD等。 ACVIM共识指南 - 用于诊断和处理狗的粘液丝瓣脱离的线。 J VET Intern Med。 2019; 33(3):1127-1140。 7。 Boswood A,HäggströmJ,Gordon SG等。 8。Keene BW,Atkins CE,Bonagura JD等。ACVIM共识指南 - 用于诊断和处理狗的粘液丝瓣脱离的线。J VET Intern Med。2019; 33(3):1127-1140。 7。 Boswood A,HäggströmJ,Gordon SG等。 8。2019; 33(3):1127-1140。7。Boswood A,HäggströmJ,Gordon SG等。8。pimobendan在临床前粘液丝瓣疾病和心脏症的狗中的影响:史诗般的研究 - 一项随机临床试验。J VET Intern Med。2016; 30(6):1765-1779。 Engel-Manchado J,Montoya-Alonso JA,DoménechL等。 犬菌丝丝瓣疾病的机器学习技术:整合了解血,生活质量调查和体格检查。 兽医科学。 2024; 11:118。 9。 Pedersen HD,HäggströmJ,Falk T等。 狗轻度二尖瓣反流中的神经培养:观察者的变化,物理操作的影响以及与颜色多普勒超声心动图和唱机心脏摄影的一致。 J VET Intern Med。 1999; 13(1):56-64。 10。 HöglundK,French A,Dukes-McEwan J等。 拳击手狗中的低强度心脏杂音:观察者间的变化和压力测试的影响。 J小动画实践。 2004; 45(4):178-185。 11。 Vezzosi T,Alibrandi L,Grosso G,TognettiR。对基于智能手机的新数字听觉检查材料的评估,该数字听觉仪具有狗和猫中的Phonocartiography和心电图。 兽医J。 2023; 295:105987。 12。 Blass KA,Schober KE,Bonagura JD等。 150只猫中3200型3M Littmann电子听诊器的临床评估。 J猫科药。 2013; 15(10):893-900。 13。 VörösK,Nolte I,HungerbühlerS等。 使用基于传感器的电子听诊仪,狗心脏杂音的声音记录和数字声音心电图。 14。2016; 30(6):1765-1779。Engel-Manchado J,Montoya-Alonso JA,DoménechL等。犬菌丝丝瓣疾病的机器学习技术:整合了解血,生活质量调查和体格检查。兽医科学。2024; 11:118。9。Pedersen HD,HäggströmJ,Falk T等。狗轻度二尖瓣反流中的神经培养:观察者的变化,物理操作的影响以及与颜色多普勒超声心动图和唱机心脏摄影的一致。J VET Intern Med。1999; 13(1):56-64。 10。 HöglundK,French A,Dukes-McEwan J等。 拳击手狗中的低强度心脏杂音:观察者间的变化和压力测试的影响。 J小动画实践。 2004; 45(4):178-185。 11。 Vezzosi T,Alibrandi L,Grosso G,TognettiR。对基于智能手机的新数字听觉检查材料的评估,该数字听觉仪具有狗和猫中的Phonocartiography和心电图。 兽医J。 2023; 295:105987。 12。 Blass KA,Schober KE,Bonagura JD等。 150只猫中3200型3M Littmann电子听诊器的临床评估。 J猫科药。 2013; 15(10):893-900。 13。 VörösK,Nolte I,HungerbühlerS等。 使用基于传感器的电子听诊仪,狗心脏杂音的声音记录和数字声音心电图。 14。1999; 13(1):56-64。10。HöglundK,French A,Dukes-McEwan J等。拳击手狗中的低强度心脏杂音:观察者间的变化和压力测试的影响。J小动画实践。2004; 45(4):178-185。 11。 Vezzosi T,Alibrandi L,Grosso G,TognettiR。对基于智能手机的新数字听觉检查材料的评估,该数字听觉仪具有狗和猫中的Phonocartiography和心电图。 兽医J。 2023; 295:105987。 12。 Blass KA,Schober KE,Bonagura JD等。 150只猫中3200型3M Littmann电子听诊器的临床评估。 J猫科药。 2013; 15(10):893-900。 13。 VörösK,Nolte I,HungerbühlerS等。 使用基于传感器的电子听诊仪,狗心脏杂音的声音记录和数字声音心电图。 14。2004; 45(4):178-185。11。Vezzosi T,Alibrandi L,Grosso G,TognettiR。对基于智能手机的新数字听觉检查材料的评估,该数字听觉仪具有狗和猫中的Phonocartiography和心电图。兽医J。 2023; 295:105987。 12。 Blass KA,Schober KE,Bonagura JD等。 150只猫中3200型3M Littmann电子听诊器的临床评估。 J猫科药。 2013; 15(10):893-900。 13。 VörösK,Nolte I,HungerbühlerS等。 使用基于传感器的电子听诊仪,狗心脏杂音的声音记录和数字声音心电图。 14。兽医J。2023; 295:105987。12。Blass KA,Schober KE,Bonagura JD等。150只猫中3200型3M Littmann电子听诊器的临床评估。J猫科药。2013; 15(10):893-900。 13。 VörösK,Nolte I,HungerbühlerS等。 使用基于传感器的电子听诊仪,狗心脏杂音的声音记录和数字声音心电图。 14。2013; 15(10):893-900。13。VörösK,Nolte I,HungerbühlerS等。 使用基于传感器的电子听诊仪,狗心脏杂音的声音记录和数字声音心电图。 14。VörösK,Nolte I,HungerbühlerS等。使用基于传感器的电子听诊仪,狗心脏杂音的声音记录和数字声音心电图。14。Acta Vet悬挂。2011; 59(1):23-35。Oliveira J,Renna F,Costa PD等。circor digiscope数据集:从杂音检测到杂音分类。2021 https:// arxiv。org/abs/2108.00813v1。2021年10月26日访问。15。Clifford GD,Liu C,Moody B等。心脏声音分析的最新进展。生理测量。2017; 38(8):E10-E25。 16。 Bentley PJ,Nordehn G,Coimbra MT,MannorS。Pascal Class-fying Heart Sounds挑战2011(CHSC2011)结果。 2011 http://www.peterjbentley.com/heartchallenge/index.html。 2018年4月18日访问。 17。 Liu C,Springer D,Li Q等。 用于评估心脏声音算法的开放访问数据库。 生理测量。 2016; 37(12):2181-2213。 18。 ljungvall I,Ahlstrom C,HöglundK等。 使用心脏声音和杂音的信号分析来评估狗的二尖瓣浮肿的严重程度,可归因于狗的粒二尖瓣疾病。 AM J Vet Res。 2009; 70(5):604-613。 19。 HöglundK,Ahlstrom C,HäggströmJ,Ask P,Hult P,KvartC。分化生理学的时间频率和复杂性分析2017; 38(8):E10-E25。16。Bentley PJ,Nordehn G,Coimbra MT,MannorS。Pascal Class-fying Heart Sounds挑战2011(CHSC2011)结果。2011 http://www.peterjbentley.com/heartchallenge/index.html。2018年4月18日访问。17。Liu C,Springer D,Li Q等。 用于评估心脏声音算法的开放访问数据库。 生理测量。 2016; 37(12):2181-2213。 18。 ljungvall I,Ahlstrom C,HöglundK等。 使用心脏声音和杂音的信号分析来评估狗的二尖瓣浮肿的严重程度,可归因于狗的粒二尖瓣疾病。 AM J Vet Res。 2009; 70(5):604-613。 19。 HöglundK,Ahlstrom C,HäggströmJ,Ask P,Hult P,KvartC。分化生理学的时间频率和复杂性分析Liu C,Springer D,Li Q等。用于评估心脏声音算法的开放访问数据库。生理测量。2016; 37(12):2181-2213。18。ljungvall I,Ahlstrom C,HöglundK等。使用心脏声音和杂音的信号分析来评估狗的二尖瓣浮肿的严重程度,可归因于狗的粒二尖瓣疾病。AM J Vet Res。2009; 70(5):604-613。 19。 HöglundK,Ahlstrom C,HäggströmJ,Ask P,Hult P,KvartC。分化生理学的时间频率和复杂性分析2009; 70(5):604-613。19。HöglundK,Ahlstrom C,HäggströmJ,Ask P,Hult P,KvartC。分化生理学的时间频率和复杂性分析
近年来,量子信息处理 (QIP) 的许多领域都取得了巨大进步,包括量子隐形传态 [1, 2]、量子秘密共享 [3]、量子密钥分发 [4, 5]、量子安全直接通信 [6, 7]、量子密集编码 [8]、量子算法 [9–12] 和量子门 [13–15]。由于量子通信利用量子相干叠加和量子纠缠效应,其传播速率和可靠性高于传统通信方法 [16]。此外,量子计算在高效搜索无序数据库中的目标项和分解大整数方面表现出比传统方法更高的性能 [16]。最近,已经提出了许多复杂的方法来通过采用多个自由度 (DOF) 来改进传统方法。多自由度具有广泛的应用前景,包括实现超并行量子计算 [17]、量子通信 [18]、简化量子计算 [19]、高维量子增强子 [20],以及完成单自由度系统无法解决的特定确定性任务,如确定性线性光学量子算法 [21]、确定性线性光学量子门 [22]、线性光学隐形传态 [2] 和无需共享参考框架的量子密钥分发 [23]。此外,超并行量子增强子由于其优异的优势而备受关注,使其成为长距离量子保密通信和量子计算机的潜在候选者。超并行 QIP 的操作可在两个或多个不同的自由度上同时执行,具有抗光子耗散噪声的潜力,可以提高量子信道容量,提高量子通信的安全性,降低实验要求和资源开销,提高协议的成功率,提高量子计算的速度。最近,已报道了各种超纠缠态,例如,偏振空间能量超纠缠态 [24]、偏振时间箱超纠缠态 [25]、自旋运动超纠缠态 [26]、偏振动量超纠缠态 [27]、偏振时间频率超纠缠态 [28] 和多路径超纠缠态 [29]。这些资源可以帮助我们用一个自由度实现许多重要的量子任务,例如利用线性光学完成纠缠态分析[30, 31]、纠缠纯化和浓缩[32]、单自由度团簇态制备和单向量子计算[33]、量子纠错[34]、隐形传态[27]、线性光子超稠密编码[35]、增强型违反局部现实论[36]和量子算法[29]。此外,超纠缠还在超并行光子量子计算[37, 38]、超纠缠交换[39]、超隐形传态[40]、超纠缠态分析[41–43]、超并行中继器[44]、超纠缠纯化[45, 46]和超纠缠浓缩[47, 48]。光子已经成为超并行QIP的优秀候选者,因为它们拥有大量可用的量子比特,例如自由度,包括偏振[49]、空间模式[24]、横向轨道角动量[50, 51]、时间箱[52]、频率(或颜色)[53]和连续可变的能量时间模式[54]。此外,由于自由空间中的退相干可以忽略不计,光子不仅可以轻松地在长距离上携带量子信息,而且还可以通过线性光学元件以极快和精确的方式对其进行操纵,并以高效的方式产生[55]。使用标准线性光学元件灵活控制光子是一种有趣的