摘要蜘蛛对于维持生态系统的平衡很重要,在奥斯曼纳巴德地区仍然没有涵盖蜘蛛多样性的工作,因此,我们从事奥斯曼纳巴德地区蜘蛛的多样性,发现属于17种蜘蛛的11个家族的不同蜘蛛。所有蜘蛛都是通过走出工作区域,视觉搜索和陷阱陷阱刷捕获等来收集的。随后根据Tikader(1987)研究了研究,用于鉴定,形态,丰度和多样性参数的蜘蛛[13]。与居住在未受干扰的温带地区相比,奥斯曼纳巴德地区蜘蛛的形态和人口结构受到人类干扰的密切影响。;它仍然没有完全探索或理解。因此,目前的研究是为了调查印度马哈拉施特拉邦奥斯曼纳巴德地区所选栖息地的蜘蛛多样性。关键字:多样性,蜘蛛,身份,家庭,物种和奥斯马纳巴德
1。在2019年,自然保护部(DOC)介绍启动了“NgāAwa河修复计划”,以回应提高本地淡水生物多样性的知识和管理的授权。NgāAwa倡议旨在恢复从山到海的14个优先集水区的淡水生物多样性。14个优先集水区之一是Waipoua河流集水区。正在进行的工作中,Doc和Te Iwi o te Roroa之间的合作努力在该地区持有Mana Whenua。WaipouaNgāAwa项目结合了Te Roroa独特的Mātauranga(传统知识),以告知恢复工作,并确保将河流的健康置于优先级。与其他恢复活动结合在一起,进行了河流健康监测(2020-2023),以建立生态状态的基线,并由Cawthron Institute编写了一份报告(请参阅Eveleens&Kelly 2023)。这项生态工作的一部分包括对底栖淡水大型无脊椎动物的监视监测,可用于检测由人类诱发的应力引起的水生环境变化,例如进入水道的污染物。大型无脊椎动物通常在溪流和河流中很丰富,并且通常用于水质评估,因为它们的多样化社区对不断变化的环境条件提供了多样化的反应(Boothroyd&Stark 2000)。可以得出结论,解决这些问题对于实现该项目的长期目标至关重要。新西兰淡水无脊椎动物动物动物群的特征是高水平的区域和民族主义。它们是当地条件的良好指标,因为它们往往会受到限制,因此在很长一段时间内会受到环境条件的影响,这与当时是水道快照的水质测量值不同。监测数据显示,大多数地点的生物多样性价值都很高,但是无脊椎动物,栖息地和水质受到损害,挑战仍然存在,包括与异国林业和田园活动有关的土地使用实践,这导致某些地区降级。除了年度大型无脊椎动物监测外,DOC在2023年进行了一项研究,比较了1994年在1994年在13个WAIPOUA站点收集的底栖采样结果(Seitzer 1994),以及DOC在2023年5月收集的新样本(Pohe 2023)。由于该地区最近的大规模洪水而难以解释结果,但得出的结论是,流健康状况与大约30年前的河流状况非常相似。Doc负责管理和保护新西兰的生物多样性,并且该角色的重要组成部分是对物种保护状况的持续评估。许多代表的分类单元被大量研究了,当前的评估和抽样方法通常具有生物监测重点(例如对水质评估属的识别),而不是生物多样性的重点(物种水平的识别),因此可能会大大不足存在的实际生物多样性。为了保护生物多样性,了解存在的物种可能是最大的知识差距。2021)。例如,一种生物监测方法将记录Mayfly属的Zephlebia属,但生物多样性评估(在北国集水区)可以记录所有八种描述的Zephlebia物种。多样性研究本质上需要物种级别的识别,这反过来又需要通过为任务量身定制的采样方法收集的成人标本。新西兰淡水无脊椎动物保护面临的另外两个主要知识差距是关于分类分类分布的数据,并且缺乏自传信息(Drinan等人在这里,我们报告了一项研究的结果,该研究涉及一系列旨在针对三个数字占主导地位的淡水昆虫秩序的成人生命阶段的光捕获调查;世代翅目,plecoptera和trichoptera(以下简称EPT),通常称为Mayflies,Stoneflies和caddisflies。作为一项初步研究,调查了三个Waipoua溪流(Okawawa,Kopai,Mirowharara)的七个地点。目的是更好地了解存在物种水平的无脊椎动物生物多样性,并开始记录保护兴趣的物种(被列为威胁,风险,数据不足或对科学的新物种)。
∗生物学学院,美国新布拉斯·林·科恩大学,美国东北68588,美国; †美国纽约州14627的Roc Hest Er的Bio Logy的Dep Artity,Roc Hest Er的Uni Versity; ‡美国纽约州伊萨卡市的生物学杂志和环境的生物学艺术; §美国加利福尼亚州Inst I t te t te t te t te t t te t te t te t t te t te t te t t t t te a saden a,美国加利福尼亚州91125,美国; ¶海洋生物学ICA L Labo Rato Ry,Wo O DS Hole,MA 02543-1050,美国; || Bio Logy,Uni Versi ty o f o ttawa,o ttawa ont art ar io k1n 6n5,加拿大; #普林斯顿神经科学Insti Insti Tu t e,Univer on Princet,Princet on,NJ 08544,美国; ∗ *生物学Dep Art Ment,Bowdoin College,Brunswick,ME 04011,美国; ††WY AMIN G,LA RA MIE,WY MIE,WY 82070,WY AMING UNISWERALIG和生理学艺术; ‡‡耶鲁大学,纽黑文,CT 06520-8109,耶鲁大学地球和行星科学; §§§人生科学学院,一家州立大学,美国坦佩,亚利桑那州85287-4501,美国; ¶¶BioLogy,Uni Versi ty of th carolin a,ch apel hi l l,NC 27599,美国; |||美国加利福尼亚州伯克·埃利(Berk Eley),美国加利福尼亚州94720的贝尔克·奥尼亚(CALIC ORNIA)的特里格拉(Tegra Tiv e B)美国宾夕法尼亚州公园,宾夕法尼亚州16803,宾夕法尼亚州立大学生物学的## Dep Art Ment; ** Heureka,芬兰科学中心,Vantaa 01300,芬兰; †††nat iona l生物学中心科学中心,tata Insti te t t t t t t t t t t t t in dia in rch,ba ngalore 560065,in dia; Bio log Ica l Sciences,GE Org ia t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t in a in a in lant a,ga 30332,美国
ISSN印刷:2617-4693 ISSN在线:2617-4707 IJABR 2024; SP-8(9):110-114 www.biochemjournal.com收到:11-06-2024接受:15-07-2024 Rupali JS Ph.D.印度新德里,印度德里市ICAR-印度农业研究所昆虫学系学者,Basavaraj N Hadimani Icar-Indian农业研究所,印度新德里,印度德里,印度Vidya Madhuri E Ph.D. ICAR-印度农业研究所昆虫学系学者,印度新德里,印度德里,Bharath Kumar BM,硕士印度泰米尔纳德邦,泰米尔纳德邦,印度旁遮普邦的Phagwara昆虫学,可爱的专业大学昆虫学,印度旁遮普邦,托米尔·纳德·纳德·纳德(Tamil Nadu
抽象的昆虫病作用真菌(EPF)可以定义为有益的多功能真核生物微生物,在害虫管理中显示关键的生态服务,其中一些物种具有与植物建立相互关系的特殊能力。这些真菌的大规模生产对于支持负担得起的广泛商业化和全球现场应用至关重要。在主要由行业探索的大规模生产方法中,淹没的液体发酵是一种强大而多才多艺的技术,允许形成为害虫控制中各种应用指定的不同类型的繁殖物。通过产生单细胞结构(菌丝体,胚孢子和淹没的分生孢子)或多细胞结构(菌丝体和微植物),许多虚伪的EPF很容易在人工底物上进行培养。少于某些EPF可能会形成具有环保的衣原体,但这些结构几乎总是被忽略。A continued research pipeline encompassing screening fungal strains, media optimization, and proper formulation tech- niques aligned with the understanding of molecular cues involved in the formation and storage stability of these propagules is imperative to unlock the full potential and to fine-tune the development of robust and effective biocontrol agents against arthropod pests and vectors of diseases.最后,我们设想了淹没的液体发酵技术的光明未来,以补充或替换传统的固体底物发酵方法,以大量生产许多重要的EPF。
抽象的天然生物与周围的物理环境以及广泛的其他生物有密切接触。换句话说,虽然单个生物体构成了生态系统的一部分,但如果它们包括体内存在的各种微生物群落,但它也可以被视为单个生物本身就是建立一个单一的生态系统。 大多数动物都有消化道,喂养,消化,吸收,代谢,排泄和生活。消化道是一个稳定的环境,经常提供丰富的营养,并且居住了微生物。毫不夸张地说,成为动物意味着患有肠道菌群。 微生物的先进材料生产,分解和修饰能力不仅在生态系统中起重要作用,而且在人类社会中也以多种方式使用。特别是,近年来,已经揭示了肠道细菌深深地参与了人类疾病和身体健康,并且细菌在生物体中的多种生物学功能,即共生细菌,引起了人们的关注。 昆虫是人类到目前为止所描述的大多数生物多样性,并且是陆地生态系统的核心生物,但是大多数人都会不断或半稳定地在体内携带微生物。这种现象称为“内部共生”,因为它是一种以无与伦比的空间接近性建立的共生关系,因此观察到了极高的相互作用和依赖性。这些关系通常会创造新的生物学功能。通常,共生的微生物和宿主昆虫几乎彼此融合在一起,形成了一种复合物,好像它是单个生物体一样。同样适用于肠道共生。 共生关系出现了哪些新的生物学功能和现象?通过共同生活,如何将不同生物体的基因组和功能纳入单个生命系统的构建中?共同生活的意义和成本是什么?当个人和个人,自我和非自我融合在一起时会发生什么? 这次,我们将介绍环境适应的演化和机制,可以通过微生物共生,尤其是专注于晚期肠道共生。
基因组减少,无壁和挑剔的螺旋质细菌,支原体,“念珠菌植物植物”和属于Mollicutes级的盟友,以许多独特的微生物学特征而闻名,这些特征促使研究人员调查其基础,应用程序,brown和Brown and Brown and Brown and and 2018。它们主要是居住在真核细胞上或内部的各种动物或植物的寄生或共生。螺旋体以其特征性的螺旋形状和主动抽搐运动性认可,与多样化的节肢动物和植物相关(Gasparich等,2020),并已开发为研究辅助共生体的模型(Anbutsu和Fukatsu,2011; Lo等,2016)。一些螺旋菌POULSONII和螺旋体Ixodetis菌株引起了其昆虫宿主的显着生殖表型,称为男性杀伤(Hurst and Frost,2015年)。相比之下,其他一些与昆虫相关的螺旋形保护其宿主免受天然敌人的侵害,包括寄生虫黄蜂,线虫和致病真菌(Ballinger and Perlman,2019年)。螺旋体柑橘和螺旋藻kunkelii分别臭名昭著,分别是柑橘和玉米的毁灭性病原体(Gasparich等,2020)。支原体不仅在医学上很重要,因为人类或动物病原体(如支原体肺炎)(Waites and Talkington,2004年)和霉菌性霉菌性甲状腺肿(Teodoro等人,2020年),而且还以最小的细菌
昆虫的生物多样性在维持生态系统的平衡和生态系统的功能中起着至关重要的作用。对昆虫生物多样性的全面了解和油棕农业生态系统中的丰度对于实施有效的保护和可持续管理实践至关重要,尤其是因为油棕是马来西亚的重要农业商品。这项研究旨在调查昆虫的生物多样性,丰度和均匀性,包括油棕农业生态系统中的六个地区。保护区(CSA)区域,河岸地区,年轻成熟地区,森林边缘地区,成熟地区和未成熟地区。采样于2023年2月采用了四种不同的采样技术,即不适陷阱,清扫网,轻度陷阱和陷阱陷阱。鉴定采样物种扩展到家庭水平,对物种水平的有益昆虫的深度分类更深入。结果记录了河岸地区是最高的多样性和丰富性,而最高的均匀度是在成熟地区记录的。尽管区域之间有所不同,但对该区域之间的方差分析并未表明昆虫种群的差异很大。此外,formicidae代表了森林边缘,未成熟,成熟和河岸地区的最主要家族,果蝇科中占据了年轻成熟和森林边缘的盛行。而,Muscidae家族在CSA地区很突出。对有益昆虫的功能多样性分析表明,捕食者的最大百分比为主要群体,其次是寄生虫和传粉媒介。表明,捕食者的最大百分比为主要群体,其次是寄生虫和传粉媒介。这项研究强调了油棕农业生态系统中的昆虫种群动态,提供了宝贵的见解,在其中,汁液的每个区域都会有助于重要的昆虫组装,这将有利于生物多样性和保护景观管理的计划。关键词:功能组;掠食性昆虫;景观修复;保护区域;河岸
[8] Chen,T.,P。Egan,F。Stoeckli和K. Shea。“研究将基于添加剂制造的设计练习纳入大型的第一年技术图和CAD课程的影响。” ASME IDETC工程教育会议。波士顿,马萨诸塞州,2015年。[7] Egan,P.,T。Ho,C。Schunn,J。Cagan和P. Leduc。“培训背景和设计工具对多层生物系统设计的影响。”国际工程设计会议。米兰,意大利,2015年。 [6] Egan,P.,J。Cagan,C。Schunn和P. Leduc。 “基于认知的搜索策略,用于通过共生的人类和基于代理的方法得出的复杂生物纳米技术设计。” ASME IDETC设计理论与方法论会议。 布法罗,纽约,2014年。 detc2014-34714。 [5] Egan,P.,C。Schunn,J。Cagan和P.Leduc。 “出人意料的随机性:使用纳米机械生物系统的交互式模拟对紧急行为的学习和设计应用。”认知科学学会年度会议。 魁北克市,加利福尼亚州,2014年。 [4] Egan,P.,J。Cagan,C。Schunn和P. Leduc。 “用于可视化复杂多尺度系统的模块化设计工具。”国际工程设计会议。 首尔,韩国,2013年。 [3] Egan,P.,J。Cagan,C。Schunn和P. Leduc。 “利用紧急水平促进复杂的系统设计:在合成生物学领域中证明。” ASME IDETC设计自动化会议。 波特兰或2013年。 detc2013-12072 [2] Egan,P.,J。Cagan,C。Schunn和P. Leduc。 芝加哥,伊利诺伊州,2012年。pp。 793-804。米兰,意大利,2015年。[6] Egan,P.,J。Cagan,C。Schunn和P. Leduc。“基于认知的搜索策略,用于通过共生的人类和基于代理的方法得出的复杂生物纳米技术设计。” ASME IDETC设计理论与方法论会议。布法罗,纽约,2014年。detc2014-34714。[5] Egan,P.,C。Schunn,J。Cagan和P.Leduc。“出人意料的随机性:使用纳米机械生物系统的交互式模拟对紧急行为的学习和设计应用。”认知科学学会年度会议。魁北克市,加利福尼亚州,2014年。[4] Egan,P.,J。Cagan,C。Schunn和P. Leduc。“用于可视化复杂多尺度系统的模块化设计工具。”国际工程设计会议。首尔,韩国,2013年。[3] Egan,P.,J。Cagan,C。Schunn和P. Leduc。“利用紧急水平促进复杂的系统设计:在合成生物学领域中证明。” ASME IDETC设计自动化会议。波特兰或2013年。detc2013-12072 [2] Egan,P.,J。Cagan,C。Schunn和P. Leduc。芝加哥,伊利诺伊州,2012年。pp。793-804。“使用多代理模拟和结构行为函数表示的复杂纳米级系统的设计。” ASME IDETC设计理论与方法论会议。[1] Egan,P。,P。Leduc,J。Cagan和C. Schunn。“对基因工程肌球蛋白电机的设计探索。” ASME IDETC设计自动化会议。华盛顿特区,2011年。pp。1017- 1025。
