❖在旁遮普邦,哈里亚纳邦,昌迪加尔和德里的某些地区以及喜马al尔邦和拉贾斯坦邦的孤立口袋中观察到了寒冷的寒冷日期。❖在查mu-kashmir-Ladakh-gilgit-baltistan-muzaffarabad和喜马al尔邦的孤立口袋中观察到的冷浪条件。❖在昌迪加尔,东拉贾斯坦邦,恰蒂斯加尔邦,西孟加拉次孟加拉的昌迪加尔的孤立口袋中报道了vire浓雾(可见性<50 m);密集的雾(可见性50-200 m)在旁遮普邦,西北方邦,阿萨姆邦和梅加拉亚邦的孤立口袋中报道。❖可见性报告(<50 m)(以米为单位):chandigarh 00;东拉贾斯坦邦:Sikar 00; Chhattisgarh:Ambikapur 00;西孟加拉邦亚马拉亚郡:库赫·贝尔00;旁遮普邦:阿姆利则50; Assam&Meghalaya:Barapani 50,Tezpur 100; Tripura:Agartala 50;西北方邦:莫拉达巴德100❖在泰米尔纳德邦南部的孤立地方记录了大到非常大的降雨。天气系统,预测和警告(附件II和III):
❖在阿鲁纳恰尔邦的孤立地方记录了沉重的降雨,在阿萨姆邦孤立的地方大雨。❖冰雹记录在西孟加拉和锡金和阿萨姆邦的孤立地方。❖在喜马al尔邦和北阿坎德邦的孤立口袋中报告的地面霜冻条件。❖在旁遮普邦的某些地区报道了非常致密的雾(可见性<50 m);在孤立的克拉什米尔,德里,北方邦和密集的雾中(可见性50-200 m)中,在喜马al尔邦的某些地区,哈里亚纳邦·昌迪加尔,西北马迪亚邦,奥里萨邦,哈里亚纳邦昌迪加尔;在南卡纳塔克邦的孤立口袋里。❖可见性报告(<200 m)(以米为单位):查mu-kashmir:查mu机场0;旁遮普邦:Patiala,Amritsar,Adampur 0,每个,Ludhiana 20;德里:帕拉姆0;北方邦:阿格拉0;喜马al尔邦:Bilaspur 50,Mandi 100;昌迪加尔80;西中央邦:Gwalior 100;卡纳塔克邦:班加罗尔机场100;哈里亚纳邦:Karnal 180天气系统,预测和警告(附件II和III):
附属机构:1 医学教育与研究研究生院耳鼻咽喉科和头颈外科系,昌迪加尔 160012,印度 2 印度科学研究所生物系统科学与工程中心 (BSSE),班加罗尔 560012,印度 3 医学教育与研究研究生院血液学系,昌迪加尔 160012,印度 4 医学教育与研究研究生院解剖学系,昌迪加尔 160012,印度 5 医学教育与研究研究生院内分泌学系,昌迪加尔 160012,印度 6 医学教育与研究研究生院生物化学系,昌迪加尔 160012,印度 7 医学教育与研究研究生院肝病学系,昌迪加尔 160012,印度 8 内科系,医学教育与研究研究生院,昌迪加尔 160012,印度 9 中央精密仪器单元 (CSIC),医学教育与研究研究生院,昌迪加尔 160012,印度 *通信地址:maryada24@yahoo.com 电子邮件:Arora R:rhythmarora100@gmail.com Bhardwaj A:alka.bhardwaj620@gmail.com Panda NK:npanda59@yahoo.co.in S Sinharay:sanhitas@iisc.ac.in Bakshi J:bakshi.jaimanti@pgimer.edu.in RS Virk:virkdoc@hotmail.com SK Munjal:s anjaymunjal1@hotmail.com N Banumathy:n.banumathy@pgimer.edu.in G Nayak: gyaninayak@gmail.com Patro SK:sourabhlipi@hotmail.com A Sharma:anuradha2ks@yahoo.com Das R:das.reena@pgimer.edu.in Gupta T:tulikag11@gmail.com SK Bhadada:bhadadask@rediffmail.com Pal R:rimesh.ben@gmail.com Pal A: pal.arnab@pgimer.edu.in
1. 包括 AASB 16 租赁产生的 12.64 亿美元租赁资产和 16.34 亿美元租赁负债(2021 年:10.8 亿美元和 13.67 亿美元)。 2. 这是一项替代绩效指标 (APM),是一种未经审计的非 IFRS 指标。Woodside 认为,这项非 IFRS 指标提供了有用的绩效信息,但不应将其视为法定指标的指示或替代,作为实际运营绩效的指标(例如税后净利润或经营活动净现金)或任何其他根据 IFRS 呈现的财务绩效或状况指标。有关非 IFRS 指标的更多信息,包括与 Woodside 财务报表的对账,请参阅第 6.7 节 - 替代绩效指标。
阿德莱德机场率先实现碳中和 阿德莱德机场已成为澳大利亚首个实现碳中和的大型机场。自 2018 年以来,该机场通过提高能源效率、增加现场可再生能源以及购买 100% 可再生能源等活动,已将碳排放量减少了近 90%。阿德莱德机场现已实现碳中和里程碑,此前,该机场通过 Canopy(绿化澳大利亚的一部分)与南澳大利亚高勒山脉的一个土地再生项目购买经过认证的澳大利亚碳信用单位。这些信用额度将抵消 2024/25 年与航站楼内的天然气和运营车辆的燃料使用有关的剩余范围 1 碳排放。这些抵消措施只是一项临时措施,在此期间,机场将实施计划,将航站楼内的天然气厂改为电力厂,作为即将到来的资产更换周期的一部分,并将其剩余的车队车辆替换为混合动力或电动替代品。阿德莱德机场通过其可再生能源协议,从 2024 年 1 月 1 日起消除了与电力使用相关的范围 2 排放。董事总经理布伦顿·考克斯表示,阿德莱德机场在整体可持续发展方面还有很长的路要走,但这是经过数年努力制定和实施脱碳战略后取得的一项值得骄傲的成就。考克斯先生说:“我们的战略重点是通过升级到更高效的替代品、增加现场可再生能源发电以及通过机场的电力合同支持南澳大利亚的可再生能源项目来降低碳强度。”“阿德莱德机场的目标是到 2030 年将范围 1 和 2 的排放量减少 100%,到 2050 年实现净零碳排放。我们很高兴能够在 2030 年之前实现范围 1 和 2 的目标,但要实现我们的净零排放目标还有很长的路要走,其中包括往返阿德莱德的航班的排放。 “可持续航空燃料的开发和使用对于实现净零排放至关重要,11 月,我们与南澳大利亚州政府、Zero Petroleum 和澳洲航空联手评估了在怀阿拉开发低碳可持续航空燃料生产设施‘Plant Zero.SA’的可行性。” “阿德莱德机场近期的其他举措包括升级航站楼和跑道区域的照明设备(包括 LED),以及优化我们的工厂和设备以减少能源使用和排放。” 阿德莱德机场国内和国际航站楼屋顶上 3,700 多块太阳能电池板的安装也即将完成,这几乎是我们现有太阳能系统的三倍。 阿德莱德机场的所有电力均来自可再生能源,这些电力由现场太阳能和南澳大利亚 Iberdrola 的 Lake Bonney 风力发电场共同产生。
4.3 应变流中胶囊周围的速度场和压力云图(Re = 160,Ac = 0.1)。使用 p(J,' 标准化压力。4.4 胶囊膜表面的压力和剪切应力分布(使用 pU,' 标准化)(Re = 160,Ac = 0.1)。4.5 胶囊膜中的轴向、环向和冯·米塞斯张力(Re = 160,Ac = 0.1)。4.6 临界韦伯数对雷诺数和加速度数的依赖性。4.1 临界韦伯数对可行均质机操作线雷诺数的依赖性。4.8 操作压力和细胞直径对球形细胞内产生的最大张力的影响。4.9 修正临界韦伯数对修正雷诺数和加速度数的依赖性。
CALHN 面临着多方面的挑战,包括全球医疗服务面临的共同挑战以及我们当地特有的挑战。这些挑战包括不断变化的医疗需求和期望、劳动力短缺、服务分散、与其他部门的整合有限、持续存在的准入和公平问题(包括急诊室拥挤)、数字化转型障碍、成本上升、功能设计限制、环境变化以及我们的组织文化与核心价值观的关键一致性。面对这些挑战,我们必须保持适应能力并响应外部变化和举措,并从同行的经验教训中受益,为我们的消费者提供最好的服务和结果。
艾伯塔省教育要求每所学校制定一项计划以改善学生学习。学校发展计划(SDP)将单个学校目标与CBE教育计划中确定的目标保持一致| 2024-2027。每年,学校都会捕获对设定目标的持续改进的证据。根据艾伯塔省教育对学校权限计划和成绩报告的要求,学校随后在一份年度报告中通过传达学生的成长和成就来向学校社区提供保证,以证明改进结果和下一步。这些结果支持不断提高向学生提供的教育计划的质量和有效性,同时也改善了学生的学习和成就(学校当局的资助手册2024-25学年p。196)。
开发自定义的钻井过程,以最大程度地减少损害并改善天然纤维复合材料的整体性能,这取决于对其钻孔性能和潜在损害的彻底了解。这项研究探讨了用椰子鞘纤维增强的红色填充聚酯复合材料中分层和推力的变化。采用Taguchi阶乘设计,该实验研究了钻孔参数的影响,包括钻井直径,主轴速度和进料速率。使用方差分析分析来验证实验结果。发现的结果表明,由于添加红色泥浆,由于复合材料的固有脆性影响,提高进料速率和主轴速度会导致推力和分层的升高。在钻井参数中,进料速率对推力施加了最大的影响(大约30%),而点角对分层的影响最大(60%)。对钻孔表面的分析揭示了基质裂纹,纤维提取和基质涂抹,强调了优化钻孔参数,选择适当的工具以及实施有效的冷却方法的重要性,以改善钻孔纤维复合材料的整体表面表面和质量。这项研究有可能协助制定策略,以最大程度地减少损害并提高整体表面质量;最终,它有助于促进材料科学和工程学的知识,并在不同行业的天然纤维复合材料的制造和利用中应用。
