摘要 X/γ 射线在实验室天体物理和粒子物理中有许多潜在的应用。尽管已经提出了几种方法来产生具有角动量(AM)的电子、正电子和 X/γ 光子束,但产生超强明亮的 γ 射线仍然具有挑战性。本文提出了一种全光学方案来产生具有大光束角动量(BAM)、小发散度和高亮度的高能 γ 光子束。在第一阶段,强度为 10 22 W/cm 2 的圆偏振激光脉冲照射微通道靶,从通道壁拖出电子,并通过纵向电场将其加速到高能量。在此过程中,激光将其自旋角动量(SAM)转换为电子的轨道角动量(OAM)。在第二阶段,驱动脉冲被附着的扇形箔反射,从而形成涡旋激光脉冲。在第三阶段,高能电子与反射的涡旋脉冲正面碰撞,并通过非线性康普顿散射将其 AM 转移到 γ 光子。三维粒子模拟表明,γ 射线束的峰值亮度约为 10 22
另一个挑战是可用于任务的专家:经常被低估的电化学在能源过渡中至关重要。在其核心上,它可以开发高级储能系统和有效的转换设备。电化学工艺是这些技术的基础,从为电动汽车供电到产生清洁能源的电池。理解和进步的电化学对于克服能源过渡挑战,促进可再生资源的整合并确保可持续的未来至关重要。当我们努力建立更清洁的能源景观时,承认电化学的基本作用在推动创新和实现韧性和环保能源过渡方面变得至关重要。我们目前需要更多的专家毕业,以服务于上述所有感兴趣的领域。
摘要:固态量子发射器 (QE) 是光子量子信息处理的基础。由于 III 族氮化物半导体中 QE 的制造工艺复杂,且在光电子、高压功率晶体管和微波放大器等领域的应用日益广泛,因此人们对开发高质量的 QE 产生了浓厚的兴趣。本文报道了在氮化铝基光子集成电路平台中生成和直接集成 QE。对于单个波导集成 QE,在连续波 (CW) 激发下,在室温下测得的芯片外计数率超过 6 × 10 4 计数/秒 (cps;饱和率 >8.6 × 10 4 cps)。在未图案化的薄膜样品中,在连续波激发下,室温下测量了 g (2) (0) ∼ 0.08 的反聚束和超过 8 × 10 5 cps(饱和率 >1 × 10 6 cps)的光子计数率。虽然自旋和详细的光线宽度测量留待将来研究,但这些结果已经表明,高质量 QE 有可能单片集成在各种 III 族氮化物器件技术中,这将带来新的量子器件机会和工业可扩展性。关键词:薄膜氮化铝、量子发射器、光子集成电路、单光子、宽带隙半导体、量子光子学 Q
关键电离分数的概念对于高谐波生成至关重要,因为它决定了最大的驱动激光强度,同时保留了谐波的相位匹配。在这项工作中,我们揭示了第二个非绝热的临界电离馏分,这基本上扩展了相匹配的谐波能量,这是由于气体等离子体中强激光场的强烈重塑而产生的。我们通过针对广泛的激光条件进行实验和理论之间的系统比较来验证这种情况。尤其是,高谐波光谱与激光强度的性质经历了三种独特的场景:(i)与单原子截止的巧合,(ii)强光谱延伸和(iii)光谱能量饱和。我们提出了一个分析模型,该模型可以预测光谱扩展,并揭示了非绝热效应对中红外激光器的重要性。这些发现对于在光谱和成像中应用的高亮度软X射线源的开发很重要。
亮度并显著塑造每个空间的氛围。选择一种可以使任何空间变得明亮并明显塑造氛围的。选择一个