■离心机不适用于爆炸性或放射性,或生物学或化学污染的气氛。■用户必须在离心有毒,放射性或用致病性微生物污染的物质的危险物质或混合物时采取适当的动作。制造商通常建议仅使用带有特殊螺钉盖的离心管来进行危险物质。使用可密封的离心管与生物安全系统进行风险3和4的材料。■制造商不建议用易燃或爆炸材料离心。■制造商不建议使用具有高能量化学反应的材料离心。
电动汽车电池的制造过程通常会将潜在危险的颗粒释放到空气中,包括铅,镉,镍,钴和铝的灰尘。焊接烟雾也被认为是有毒的,并且随着时间的流逝,如果无法适当缓解,可能会导致严重的健康问题。某些材料的灰尘甚至可以易燃或可燃。有效的灰尘控制对于满足OHSA标准至关重要,以保护工人免于可能有害物质暴露于潜在的有害物质,以及制造过程中生成的烟雾,灰尘和颗粒物的其他监管要求。
4.1.5.2 氢气蒸发后体积膨胀超过 850 倍。氢气与空气形成易燃混合物,浓度范围很广,约为体积的 4% 至 75%。仅含 0.02 毫焦耳能量的火花即可点燃氢气;点燃空气中的甲烷所需的最低能量是氢气的 15 倍。此外,通常没有用于氢气服务的防爆电气设备;需要基于对氢气特性的透彻理解而定制设计的电气系统。最后,氢气会导致原本适用于低温服务的材料变脆。
继格伦菲尔大厦火灾和《2022 年建筑安全法》之后,涉及易燃覆层和其他材料以及更普遍的防火问题的案件显著增加。建筑责任令的出台,以及公司责任可能扩大到包括关联公司和公司高管,以及诉讼时效延长至 30 年,为针对历史发展进行广泛诉讼提供了可能性。法院仍处于处理这些索赔的早期阶段。展望未来,随着常见问题的出现,可能需要新的定制程序来提供有效的案件管理。
方法喷射火和碳氢化合物火灾喷射火标准 ISO 22899-1 和 -3 喷射火标准 ISO 22899-1:2021 包括模拟易燃气体、加压液化气体或闪蒸液体燃料高压释放产生的热负荷和机械负荷。关于标准 ISO 22899-3,它描述了一种扩展的测试方法,用于确定被动防火材料和系统或关键过程控制设备的喷射火抵抗力。它表明了 PFP 材料或设备在严重喷射火中的表现,这种喷射火可以产生 350 kW/m² 的持续热通量。
快速过热会导致“热逃亡”,这是一系列化学反应,可能导致温度无法控制的升高。当电池产生的热量超过其耗散到周围环境中时,就会发生。当电池过热时,它可能会在过度充电时发生,它可能会释放包括氢在内的易燃气体。气体可能会在贝斯模块中堆积,从而导致爆炸,这些爆炸可能释放有毒的烟雾和危险物质。暴露于高温也可以加速电池老化,从而增加故障的风险。3
摘要:为了进一步提高锂离子电池(LIBS)的能量密度和安全性,需要多功能电解质溶剂来替代常规的碳酸盐溶剂。在这项研究中,将不可氟化的氟化酯甲基3,3,3-三氟丙酸酯(MTFP)评估为具有LICOO 2阳性电极的高压LI电池的电解质溶剂。具有基于MTFP的电解质的LI/LICOO 2电池与具有常规的基于碳酸盐的电解质的电池相比具有较高的能力保留率在高压操作下,基于MTFP的电解质无容量损失或极化增加。 使用基于MTFP的电解质也可以改善LICOO 2电极的低温性能和热稳定性。 通过基于MTFP的电解质循环的LICOO 2电极对X射线光电子光谱进行分析表明,在电极表面上形成了薄且均匀的钝化层,从而产生了极好的环环性和LICOO 2的热稳定性。 与非易燃电解质有关的见解有助于不牺牲安全性的高能液体的发展。具有基于MTFP的电解质的LI/LICOO 2电池与具有常规的基于碳酸盐的电解质的电池相比具有较高的能力保留率在高压操作下,基于MTFP的电解质无容量损失或极化增加。使用基于MTFP的电解质也可以改善LICOO 2电极的低温性能和热稳定性。通过基于MTFP的电解质循环的LICOO 2电极对X射线光电子光谱进行分析表明,在电极表面上形成了薄且均匀的钝化层,从而产生了极好的环环性和LICOO 2的热稳定性。与非易燃电解质有关的见解有助于不牺牲安全性的高能液体的发展。