高温超导 (HTS) 带可以通过非常细的导线传输非常大的电流,而且没有电阻。这意味着 HTS 带可以缠绕成不产生热量的轻质高场电磁铁。因此,HTS 电磁铁在太空领域非常有用,因为太空领域对尺寸和重量有极大的限制,而且很难通过辐射方式消散传统铜电磁铁产生的热量。因此,HTS 被认为是一种小型化技术,能够在小型卫星上产生高磁场,用于电力推进、辐射屏蔽、姿态控制和感应储能等应用。HTS 设备需要在低温下运行,通常在 77 K 或以下。使用电制冷机可以在太空中保持这些低温。制冷机的性质及其与 HTS 电磁铁的集成方式对 SWaP(尺寸、重量和功率)要求有重大影响。本文介绍了旨在集成到立方体卫星中的 HTS 电磁铁设计的建模和初步物理测试。这项工作采用数值建模和实验相结合的方法,研究了单个微型低温冷却器是否可以将 HTS 电磁铁冷却到临界温度以下。使用 Sunpower CryoTel MT 低温冷却器,重量仅为 2.1 千克,长度和直径分别仅为 243 毫米和 73 毫米,仅使用 40 W 的输入功率即可获得低于 75 K 的电磁铁温度,同时保持 40 °C 的热端温度。这表明 HTS 电磁铁可以使用微型单级低温冷却器在小型卫星上运行。
两次火星探测任务旨在利用拉曼光谱仪等仪器探测生物分子作为灭绝或现存生命的标志。然而,关于拉曼可检测生物分子在火星环境中的稳定性仍有许多未知数,这影响了对结果的解释。为了量化拉曼可检测生物分子的稳定性,我们将七种生物分子暴露在国际空间站外的模拟火星环境中 469 天。紫外线辐射 (UVR) 强烈改变了拉曼光谱信号,但当样品被屏蔽以免受紫外线照射时,只观察到微小的变化。这些发现为在火星地下寻找生物特征的火星任务操作提供了支持。该实验证明了在太空暴露后通过拉曼光谱在火星风化层类似物中检测生物分子的可检测性,并为在目标环境中建立经过太空验证的光谱生物特征综合数据库奠定了基础。
摘要即使火星行星被认为与地球最相似,但在某些方面仍然有所不同。重力较小。它的大气,气候和地质与地球有些不同。因此,在火星表面进行了几项机器人任务,以找到使行星适用于人类安全的方法。该项目旨在设计火星星球上的第一个人类殖民地。这将是人类生活,工作和探索的新家。这个殖民地将在地球上建立第一个人性化研究中心。它还将通过为人类居住的所有其他所需的设施提供生活住宅,为未来的探险家提供可持续的栖息地。该项目中考虑的空间计划包括居住区,公共社会区,健康区工作区和公用事业区。在项目设计期间考虑了几个关键要素,例如水和氧气,种植(土壤),温度,辐射,压力,风,电源(能源),表面(结构),材料和心理方面。该项目将提供一项全面的研究,以设计合适的定居点,可以在极端环境地点支持安全的日常生活。
在过去十年中,机器学习 (ML) 已成为许多数据驱动应用的主要驱动力。因此,快速发展的太空行业准备利用最近的 ML 进步来实现其大部分数据处理的自动化。这包括基于卫星的应用,例如地球观测、通信、导航以及航天器的自动故障检测和恢复。关键的 ML 算法(例如对象检测、语义分割、姿势估计和异常检测)有助于实现这些太空应用。然而,许多这些算法(即经过训练的模型)会产生大量的计算工作量,需要大型、耗电的 GPU 来执行,这与在太空环境中运行是不相容的。另一方面,对于许多需要低延迟解决方案的卫星应用来说,下行数据进行地球处理也不是一种选择。边缘计算是数据源头的有效处理解决方案,这可能是使 ML 广泛用于卫星应用的关键。此外,通过减少卸载敏感数据的需要,机载处理可以减轻与隐私相关的障碍,阻碍 ML 在太空中的应用。
地球外的真菌结构:真菌作为月球和火星上的建筑材料。LJ Rothschild 1、C. Maurer 2、MB Lipińska 3、D. Senesky 4、I. Paulino-Lima 5、J. Snyder 5、M. Dade-Robertson 4、A. Wipat 4、MC Rheinstädter 6、E. Axpe 4、C. Workman 7、D. Cadogan 8 和 JW Head 9。 1 美国国家航空航天局艾姆斯研究中心,莫菲特菲尔德,加利福尼亚州,94035,美国,Lynn.J.Rothschild@nasa.gov,2 redhouse studio,克利夫兰,俄亥俄州,44113,美国,纽卡斯尔大学,泰恩河畔纽卡斯尔 NE1 7RU,英国,4 斯坦福大学,斯坦福,加利福尼亚州,94305,美国,5 美国国家航空航天局艾姆斯研究中心蓝色大理石空间科学研究所,莫菲特菲尔德,加利福尼亚州,94035,美国,6 麦克马斯特大学,汉密尔顿,安大略省,L8S 4M1,加拿大,7 DTU,Kongens Lyngy,丹麦,8 Moonprint Solutions,多佛,特拉华州,19901,美国,9 布朗大学,普罗维登斯,罗德岛州,02912,美国。
内在的昼夜节律钟会产生生理和行为的昼夜节律,从而使我们能够适应由地球自转而产生的循环环境线索。昼夜节律失调会对不同生物的适应性和健康产生有害影响。前往火星和在火星上进行的星际旅行的环境线索与地球上的环境线索截然不同。这些差异带来了许多适应性挑战,包括对人类昼夜节律的挑战。因此,使昼夜节律适应火星环境是未来登陆和居住在火星的先决条件。在这里,我们回顾了与火星环境对昼夜节律的影响相关的研究进展,并提出了进一步研究的方向和改善昼夜节律钟适应未来火星任务的潜在策略。
一个技术成熟的火星殖民地每年可以生产并运送至少 100 万吨液态氢到一个或多个低地球轨道 (LEO) 的推进剂库。在火星殖民地生产 1 公斤氢气并将其运送到 LEO 需要在火星上消耗 1.4 GJ 的能量。LEO 推进剂库包含在火星上生产的氢气以及在月球或近地小行星上生产的氧气。这种推进剂用于将有效载荷从 LEO 运送到太阳系的许多目的地,包括火星。将 1 公斤有效载荷从 LEO 运送到火星需要在火星、月球和近地小行星上消耗 3.5 GJ 的能量。使用在火星上生产的液态氢将宇航员和有效载荷运送到火星可确保火星殖民地的指数级引导增长。火星殖民地和向 LEO 运送数百万吨液态氢是太阳系殖民的关键。火星殖民地只有发展到相当规模后才会开始向低地球轨道输送液态氢。它的结构和材料中应包含约 2000 万吨钢铁和 300 万吨塑料,以及数千名宇航员。在此之前,低地球轨道氢沉积物将由月球两极的氢气供应。
已经探索了各种微生物系统,以适用于火星原位资源利用率(ISRU),并适合利用火星资源并将其转换为有用的化学产品。仅考虑完全基于生物的解决方案,可以区分两种方法,这些方法归结为正在使用的碳的形式:(a)可以直接将无机碳(大气CO 2)转换为目标化合物或(b)两步过程的专业物种的部署,该过程依赖于独立于碳和随后的碳和随后的和/或随后的复合物和/或随后的复合物。由于微生物代谢种类繁多,尤其是与化学支持处理的结合,因此通常很难进行分类。这可以扩展到作为生物制造平台输入的氮和能量的形式。为了提供可能适合空间系统生物工程的微生物细胞工厂的观点,对不同方法进行了高级比较,特别是关于优势,这可能有助于扩大红色星球上的早期人类立足点。
摘要:美国国防部使用受激辐射光放大(即激光或激光器)并非新鲜事,包括激光武器制导、激光辅助测量,甚至将激光用作武器(例如机载激光器)。激光用于电信支持也并非新鲜事。光纤中激光的使用已经颠覆了人们对通信带宽和吞吐量的认识。甚至在太空中使用激光也不再是新鲜事。激光正用于卫星到卫星的交联。激光通信可以使用数量级更少的功率传输数量级更多的数据,并且可以将发送和接收终端的暴露风险降至最低。新颖之处在于使用激光作为卫星系统地面部分和空间部分之间的上行链路和下行链路。更重要的是,使用激光在移动的地面部分(例如海上的船舶、飞行中的飞机)和地球同步卫星之间发送和接收数据正在蓬勃发展。本文探讨了使用激光作为连接地面和太空系统的卫星通信信号载体的技术成熟度。本文的目的是制定关键性能参数 (KPP),为美国国防部近期卫星采购和开发的初始能力文件 (ICD) 提供参考。通过了解使用激光而不是传统射频源作为卫星上行和下行信号载体的历史和技术挑战,本文建议美国国防部使用激光从需要保持低检测、拦截和利用概率的移动平台发送和接收高带宽、大吞吐量数据(例如,航母战斗群穿越敌对作战区域,无人机在敌方区域上空收集数据)。本文还打算确定商业部门的早期采用者领域以及可能适应使用激光进行传输和接收的领域。
摘要 已经通过实验测量了波长范围为 300 – 1,100 nm 的广谱太阳辐射对不同粒径范围的水和二氧化碳冰的穿透深度。这两种冰成分都在火星表面被发现,并被观测到为表面霜冻、积雪和冰盖。之前已经测量过雪和板冰的 e 折叠尺度,但了解这些最终成员状态之间的行为对于模拟与火星上冰沉积物相关的热行为和表面过程非常重要,例如晶粒生长和通过烧结形成板冰,以及二氧化碳喷射导致蜘蛛状物形成。我们发现穿透深度随着晶粒尺寸的增加而以可预测的方式增加,并且给出了一个经验模型来拟合这些数据,该模型随冰成分和晶粒尺寸而变化。
