产品描述 MCM-500 专为移动通信应用而设计,集成了多个调制解调器和相关射频 (RF) 电路,以支持 LEO/MEO/GEO 连接。MCM-500 采用模块化设计,包括基于现场可编程门阵列和基于通用处理器的软件定义调制解调器硬件资源以及专有调制解调器硬件,可灵活连接过去、现在和未来的合作伙伴星座。标准 L 波段和以太网接口(包括开放天线到调制解调器接口协议 (OpenAMIP) 天线控制协议)简化了 MCM-500 的部署,以创建特定于应用程序的终端架构。MCM-500 符合 MIL-STD-188-165 标准并通过了 ARSTRAT 认证。
在轨服务 (OOS) 为航天器 (s/c) 的加油、检查、维修、维护和升级提供了新的机会。随着技术的成熟和经济前景的改善,OOS 是未来航天增长的一个重要领域。这种拥堵促使航天器运营商探索如何利用 OOS。地球静止轨道 (GEO) 航天器的 OOS 任务目前正在进行中。这是由于为长寿命整体式化学推进 GEO 资产加油的商业案例已经结束。然而,除了技术演示外,目前还没有针对低地球轨道 (LEO) 航天器的 OOS 计划,因为它们的设计寿命较短且成本较低。随着行业将重点转向 LEO,为 LEO 航天器提供服务将变得尤为重要。为 LEO 星座设计 OOS 系统与基于 GEO 的系统不同,这种差异归因于 LEO 卫星的扩散、环境影响(J2 节点进动、阻力)和不同的星座模式。由于访问增加、分布式风险、灵活性和成本增加,LEO 中的卫星星座正变得更加分散。s/c 的 OOS 可以减少对子系统的要求,例如安全性和冗余需求。这些要求的减少将降低风险、降低成本并提高系统弹性。本文分析了扩散的 LEO 星座中 OOS 的好处。对几种 OOS 系统架构进行了建模;在每个系统架构中,模型将改变服务商数量、高度和轨道机动等质量。该模型的目标是优化成本、时间和效用,以生成 OOS 系统架构的权衡空间。
如果政策制定者考虑这些政策选项之间的相互关系,他们可能更有能力针对这一复杂问题采取行动。例如,实施第四种选择(改善组织和领导力)可能会提高政策制定者实施第一和第二种选择(积累知识、开发技术和改善数据共享)的能力。同样,实施第一种选择可能有助于实施第三种选择(建立标准、法规和协议)。更普遍地说,缓解措施之间的权衡可能会出现,新卫星星座的持续增加可能会带来意想不到的变化,全球社会的大量不同利益可能会随着时间的推移而发生变化,所有这些都带来了持续的不确定性。为了解决这些复杂性和不确定性,完整的报告在一个框架中提出了政策选项,这可能有助于政策制定者战略性地选择选项,既能实现好处,又能减轻大型卫星星座的潜在影响。
我们研究了全天电光 (EO) 传感器系统在增强低地球轨道 (LEO) 巨型星座的空间域感知 (SDA) 和空间交通管理 (STM) 方面的实用性。我们使用实际的传感器系统性能和真实的天气数据得出结果,并重点研究此类 EO 传感器系统网络在多大程度上可用于跟踪特定会合事件中涉及的主要和次要驻留空间物体 (RSO),以便更好地为操作员提供行动信息。特别关注涉及 Starlink 和 OneWeb 星座与 LEO 中其他物体的会合。通过详细的模拟,我们证明了全天 EO 传感器系统网络为大规模巨型星座跟踪和会合评估提供了一种有效的方法。
摘要:除了比特币之外,区块链在不同领域还有许多应用,在卫星通信和航天工业中具有极大的应用潜力。可以使用区块链技术构建以太空数字代币 (SDT) 形式处理和操纵卫星群太空交易的去中心化安全协议。使用 SDT 对太空交易进行代币化将为基于区块链的不同新解决方案打开大门,以推动航天工业中基于星座的卫星通信的发展。使用智能合约开发区块链解决方案可用于安全地验证卫星群内/之间的各种 P2P 卫星通信和交易。为了管理和保护这些交易,本文使用提出的 SDT 概念提出了一种基于区块链的协议,称为空间交易证明 (PoST)。采用该协议来管理和验证 P2P 连接中的卫星星座交易。PoST 协议使用以太坊区块链进行原型设计,并进行了实验,使用四个指标评估其性能:读取延迟、读取吞吐量、交易延迟和交易吞吐量。根据读取和交易延迟结果,模拟结果阐明了所提出的 PoST 协议在短时间内处理和验证卫星交易的效率。此外,安全性结果表明,根据真实阳性率 (TPR)、真实阴性率 (TNR) 和准确性指标,所提出的 PoST 协议在验证卫星交易方面是安全且高效的。这些发现可能会形成开发新一代基于区块链的卫星星座系统的真正尝试。
与现有的网络功能相比,低地球轨道 (LEO) 网络具有显著优势。与现有的地球静止轨道 (GEO) 卫星网络相比,低地球轨道 (LEO) 网络的延迟要低得多,并且在许多市场上可与地面光纤互联网相媲美,无论是在延迟 [ 29 ] 还是覆盖范围方面(例如,为未连接地面网络的战区提供互联网服务,就像俄罗斯和乌克兰之间的武装冲突 [ 12 ] 中所做的那样)。此外,低地球轨道 (LEO) 卫星还可以执行卫星图像处理等太空原生任务 [ 42 ]。这些趋势反过来又引起了学术界的极大兴趣,从而产生了一系列关于低地球轨道 (LEO) 计算 [ 3 , 5 , 59 ]、网络 [4, 30, 45] 和应用 [19, 64] 的研究。低地球轨道 (LEO) 星座是一种特殊类型的 CPS 基础设施,因此是一种高价值资产。就像关键的地面基础设施(如电网 [ 15 , 61 ] 和数据中心 [ 6 , 35 ])一样,LEO 星座的安全性至关重要,因为它们将成为攻击的主要目标。由于每颗卫星都配备了计算、网络、存储和传感系统,LEO 星座表现出类似的攻击媒介范围。事实上,由于 LEO 星座的独特特性,安全问题被放大了。跨地理区域(包括潜在敌对国家)的移动性,以及地面部署(例如数据中心仓库)缺乏物理边界,导致了进一步的复杂化。LEO 攻击也更难防御
地球轨道更加拥挤,拥挤会导致两个轨道物体发生碰撞的概率增加。就像我们重视地球的环境保护一样,以地球为中心的太空产业的未来必须安全和可持续地进行。空间领域感知 (SDA) 和空间交通管理 (STM) 是近乎实时的连续操作,需要不断努力,部分原因是轨道体具有类似天气的混乱性质。太阳辐射压力、驻留空间物体 (RSO) 姿态、轨道机动、大气密度波动和排气等因素与传播模型有巨大不同。从根本上说,对地球轨道上的所有物体有精确、实时和整体感知的唯一方法是建立一个网络来持续监测它。自动化是这种监视网络的关键。空间监视网络 (SSN) 提供了用于 SDA 的大部分数据。 SSN 可探测、跟踪、识别并维护地球轨道上超过 26,000 个物体的目录 [1]。space-track.org 上公开的目录是美国太空司令部 (USSPACECOM) 致力于信息共享以促进安全和可持续的太空环境的一部分。
• 虽然太空活动脱离了“传统”的陆地领域,但它们并不能免受这些法律的约束。竞争(和反垄断)法律在许多国家已经存在了一个多世纪,在太空利用中发挥着重要作用。低地球轨道空间有限,参与需要大量投入成本,可以与澳大利亚早期的竞争性电信市场相提并论,当时澳大利亚强烈希望向众多运营商开放低地球轨道,并能从中获益,从而为最终消费者提供成本和覆盖范围方面的好处。尽管如此,大型公司可能会建立自己的业务,随后因技术壁垒而阻止新运营商进入市场,这种风险是存在的。由于太空行业涉及世界各地的公司,各国在考虑其授权活动的作用和影响时确实需要合作。
马德里,2022 年 7 月 21 日 - 由 Indra 和 ENAIRE 创建的 Startical 的创新提案,旨在发射一组小型卫星以改善空中交通管理 (ATM),该提案得到了欧盟委员会的大力支持,该委员会将支持开发一个关键的演示器以加快解决方案的部署。气候、基础设施和环境执行机构 (CINEA) 将通过连接欧洲基金 (CEF) 基金向由 Startical、ENAIRE 和 Indra 领导的 ECHOES 项目捐款约 1500 万欧元,目的是验证和量化优势、可靠性和可用性,这些空间基础设施将改变空中导航部门,使其更加可持续,并使其更接近 2050 年设定的脱碳目标。该提案在 CINEA 发起的智能交通项目征集中获得了如此高比例的资金,这要归功于其出色的评级,在各种评估标准中获得了最高分。这是对其技术偿付能力、创新性、倡议的巨大影响及其颠覆性能力的认可。欧盟通过此次呼吁大力支持 ECHOES 项目,除了允许在 SESAR 3 联合承诺 (SESAR 3 JU) 及其数字欧洲天空研究和创新计划框架内继续对该技术进行投资外,还与下一代基金相兼容,这被视为委员会和成员国在促进航空基础设施以及欧洲和西班牙航空航天部门主要能力发展方面的一致性和互补性的标志。除了提高航空运输的能力、流动性、效率和环境友好性之外,这种具有重大技术和工业成分的颠覆性关键卫星基础设施将成为推动西班牙和欧洲工业走在新太空前沿的驱动力,新太空是一个具有强大增长潜力的业务领域。这将意味着质量的飞跃,进而提升该行业在全球范围内的竞争力。变革性技术作为驱动力
星座 在训练中取代 DAGR 接收机,以使操作使用更安全 验证能够承载 GALILEO 加密信号的国家架构
