我特此声明,本文件中的所有信息均按照学术规则和道德规范获取和呈现。我还声明,根据这些规则和规范的要求,我已充分引用和参考了所有非本研究原创的材料和结果。
CCD - 电荷耦合器件 CCTV - 闭路电视 CMOS - 互补金属氧化物半导体 EMC - 电磁兼容性 FIFO - 先进先出 FOV - 视场 FPGA - 现场可编程门阵列 FPS - 每秒帧数 GUI - 图形用户界面 I 2 C - 集成电路间 iLCC - 无引线芯片载体 IO - 输入输出 KTH - 皇家技术大学 LASER - 受激发射光放大 LED - 发光二极管 LISA - 迷失空间算法 LVTTL - 低压晶体管-晶体管逻辑 MP - 百万像素 PCB - 印刷电路板 SEU - 单粒子翻转 SOC - 片上系统 SPI - 串行外设接口 SPP - 空间与等离子体物理学 UART - 通用异步接收器/发射器 USB - 通用串行总线 VHDL -(超高速集成电路)硬件描述语言
美国太空监视网络 (SSN) 目前跟踪低地球轨道 (LEO) 上的 23,000 多个驻留空间物体 (RSO)。SSN 使用地面雷达和光学方法,这些方法易受大气、天气和光照条件变化的影响。这些障碍将监视能力限制在特征长度大于 10 厘米的物体上。因此,数十万个较小的 LEO RSO 仍未被跟踪,从而降低了整体太空态势感知能力。先前的研究已经证明了使用太空商用星跟踪器 (CST) 探测和跟踪特征长度大于 10 厘米的物体的可行性。我们在本文中提出的分析表明,CST 也可用于探测尺寸小于 10 厘米的碎片颗粒。我们将粒子建模为具有零相位角和 10% 反射率的朗伯球。碎片颗粒的视在目视星等表示为颗粒大小和 RSO-CST 距离的函数,并与各种 CST 的灵敏度水平进行比较。我们发现,在适当照明的情况下,一些 CST 甚至可以在数十公里的距离内探测到特征长度在 1 厘米到 10 厘米之间的碎片。更灵敏的 CST 可以识别数百公里外该尺度较大端(即 10 厘米)的 RSO;或者,它们可以在更近的距离内追踪小于 1 厘米的物体。
本论文由 AFIT Scholar 的学生研究生作品免费提供给您,供您开放访问。它已被 AFIT Scholar 的授权管理员接受纳入论文和学位论文。欲了解更多信息,请联系 richard.mansfield@afit.edu。
深空立方体卫星正成为普通航天器的宝贵替代品。它们的开发可以标志着太空探索的新纪元,由于任务成本明显降低,为许多太空领域参与者拓宽了可能性。为了正确利用微型探测器,自主导航是必不可少的支柱。在此框架中,视线 (LoS) 导航是深空巡航期间状态估计的宝贵选择。视线导航是一种光学技术,基于对可见天体(例如行星)的观测,这些天体的星历表是众所周知的。这些天体的方向是通过机载光学仪器(照相机或星跟踪器)获得的,并在导航滤波器中将其与机载存储的星历表检索到的实际位置进行比较。在机载上执行完整估计程序的可能性使该技术成为自主深空立方体卫星的有效候选者。导航精度尤其取决于两个特性:观测几何和视线方向提取精度 [1]。第一个取决于任务场景,它定义了可见物体及其相对几何形状。第二个取决于成像硬件、图像处理算法以及任务几何形状。尽管可以稍微调整任务以在有利的观测几何窗口期间发生 [2],但通常它不够灵活,无法提高估计精度。因此,LoS 方向提取精度在整体导航性能中起着至关重要的作用。在此背景下,这项工作旨在正确生成合成星跟踪器图像,然后用于测试设计的 LoS 提取算法的性能。合成图像的生成取决于成像传感器和镜头的特性。对于星跟踪器,假设使用针孔相机模型。Hipparcos-2 目录用于检索可见恒星的方向,这些方向在传感器参考系中转换。恒星的视星等转换为传感器阵列上读取的光电子数量。此转换取决于传感器的特性(像素大小、填充因子、量子效率)、镜头直径和曝光时间。为了在恒星质心算法中达到亚像素精度,入射光被故意弄模糊,因此信息分散在不同的像素上。这是用高斯分布模拟的。行星的模拟不那么简单,因为形状和视星等都取决于观测几何。为了正确
虽然光学原型设计为使用来自各种传感器的图像,但 FAI 图像特别适合展示光学原型的性能。FAI 相机的视场和检测能力与星跟踪器类似,其图像包含许多感兴趣的 RSO,尤其是在难以通过地面系统进入的极地地区。尽管孔径较小,但星跟踪器的视场 (FOV) 较大,约为 20° 或更大,因此非常适合背景天空物体监测 [2]。此外,它们的粗像素分辨率可减少由于低地球轨道 (LEO) 中相对角速率较高而导致的条纹信号损失。然而,这些商用现货 (COTS) 传感器的真正潜力在于它们的普遍性——目前数百艘航天器使用星跟踪器进行姿态测定 [3]。如果兼作 RSO 监测,那么这些“后院轨道天文台”在低地球轨道上提供的总覆盖范围将是巨大的。
然而,由于轨道的多样性以及发射器和 OTV 任务的持续时间,我们的客户要求我们找到一种解决方案,使姿态控制更稳定,以应对跟踪器被太阳遮蔽或惯性单元漂移的问题。因此,我们的 Auriga™ 陀螺仪解决方案旨在为客户提供精确、连续的信息,以实现最佳 ADCS。该解决方案将满足常规和敏捷任务(如地球观测和物联网)的需求,但也可用于新发射器、长期任务和/或需要在整个任务过程中进行最佳姿态控制的多轨道发射。我们收到越来越多要求配备这种发射器的请求,并致力于向客户提供我们的专业知识和技能。” Sodern 开发了新版本的 Auriga™ 软件库,用于控制 OH。该库现在包括使用卫星上任何可用陀螺仪提供的角速度的选项。 Auriga™ 陀螺仪对于执行地球观测或太空监视等敏捷任务的卫星特别有用。Auriga™ 陀螺仪还可以安装在执行长期任务的发射器上。通过将 Auriga™ 星跟踪器与陀螺仪耦合,运动稳健性(即承受快速旋转的能力)得到显著改善,包括星跟踪器处理过程中陀螺仪的速度。此外,将星跟踪器的数据与陀螺仪的数据合并,使耦合设备能够持续提供姿态,即使在星跟踪器不可用(致盲、卫星机动)时也是如此。这个新软件版本还包括在经历致盲或卫星机动后快速返回跟踪模式的算法,而无需经过获取模式(空间丢失模式)。如果陀螺仪测量不可用,星跟踪器将继续工作而不会中断。该解决方案还具有飞行中估计和校正误差的算法,特别是陀螺仪(偏差、比例因子、轴间错位)。这可以比在地面上更精确地校正误差,并提供最佳性能。与简单的战术级陀螺仪(ARW = 0.15°/√h)结合使用可以显著提高 Auriga TM 的稳健性:
ADCS 仿真台 该台模拟卫星的动态和在轨位置。它还模拟所有环境干扰。它包括 ADCS 传感器(星跟踪器、磁力计、陀螺仪、太阳传感器)和 ADCS 执行器(反作用轮、磁力矩器、推进器)的数学模型、姿态确定算法(卡尔曼、扩展卡尔曼滤波器、三叉戟等)。它还包含用于卫星脱轨、卫星成像、惯性物体跟踪和地面站跟踪的所有常见控制算法。
公司:IERUS Technologies, Inc.地点:阿拉巴马州亨茨维尔 主题:N201-079 技术类别:先进电子技术 第二阶段 提案标题:极其精确的星体跟踪器 SYSCOM:SSP FST 事件:WEST 2023 摘要:IERUS Technologies 和阿拉巴马大学亨茨维尔分校联手将 NASA 喷气推进实验室 (JPL) 开发的焦平面计量技术转化为现实。该技术能够以高精度定位焦平面阵列中的像素。事实证明,这种技术与精密望远镜相结合,可以测量焦平面上恒星的位置,精度优于 100 毫角秒。热分析表明,预期的环境不会使精度降低到这个极限之外。光学分析表明,标称设计将提供衍射极限性能。关键词:成像、计量、卫星、空间、可见光传感器、星跟踪器、焦平面阵列、干涉测量法 POC:Stephen Fox,stephen.fox@ierustech.com NAICS:541712
公司:IERUS Technologies, Inc. 地点:阿拉巴马州亨茨维尔 主题:N201-079 技术类别:先进电子技术 第二阶段提案标题:极其精确的星体跟踪器 SYSCOM:SSP FST 事件:WEST 2023 摘要:IERUS Technologies 和阿拉巴马大学亨茨维尔分校联手将 NASA 喷气推进实验室 (JPL) 开发的焦平面计量技术转化为现实。该技术能够以高精度定位焦平面阵列中的像素。该技术与精密望远镜相结合,可以测量焦平面上恒星的位置,精度优于 100 毫角秒。热分析表明,预期的环境不会降低超过此极限的精度。光学分析表明,标称设计将提供衍射极限性能。关键词:成像、计量、卫星、空间、可见传感器、星跟踪器、焦平面阵列、干涉测量法 POC:Stephen Fox,stephen.fox@ierustech.com NAICS:541712