表1显示了HS-8005系列阵容。为了减少划痕,日立化学化学已经开发了各种具有优化粒径和分布的产品。使用HS-8005-X3,抛光划痕可以减少到HS-8005的1/10或更少。我们建立了生产技术,以精心控制粒度和陶瓷颗粒的分布,以提供稳定的优质产品,并拥有陶瓷泥浆市场的全球最高份额。为了满足进一步减少刮擦的要求,Hitachi Chemical以NC系列形式开发了超细颗粒,以进行下一代浆液。虽然将常规的陶瓷颗粒粉碎以进行微插曲,但NC系列颗粒的大小是通过晶体生长法的泥浆,由于大尺寸颗粒而导致的划痕最小化。图3显示了HS-NC和HS-8005的外观。HS-NC是一种超细,透明的纳米级粒子。
我们的模块化构造PFA工艺增强晶圆载体和传统模制PFA工艺晶圆载体是为200 mM Fabs的湿化学加工应用而设计的。开放式流动器允许解决方案均匀,快速地通过。它们也由耐化学的PFA材料构成,因此您的过程仍未受到污染。
有效地需要用能量转换器覆盖较大的表面。这是太阳能电池,也称为光伏的地方。光伏设备,首先是由法国科学家Henri Becquerel于1839年发现的,它通过产生电子对 - 在光伏材料中的孔对直接转化为电子。这些对创建了电流流,该电流遵循材料的内置势坡。太阳能电池已成为重要的替代电源,尤其是自1970年代的石油座舱以来。此外,太阳能电池是一种有希望的无碳能源,可以帮助减轻全球变暖。实现高效率太阳能转化对于使太阳能成为满足世界能源需求的可行选择至关重要。太阳能电池的能量转化效率是指电池产生的电力与电池每单位时间接收到的入射阳光能量的比率。
《近期研究评论》杂志,2022 年 12 月,第 1 卷,第 1 期,第 75-86 页 75 DOI:https://doi.org/10.36548/rrrj.2022.1.007 © 2022 Inventive Research Organization。这是一篇根据知识共享署名-非商业性国际 (CC BY-NC 4.0) 许可协议开放获取的文章
4.3.2 重叠................................................................................................ 30
在减小移动设备外形尺寸和增加功能集成度方面,晶圆级封装 (WLP) 是一种极具吸引力的封装解决方案,与标准球栅阵列 (BGA) 封装相比具有许多优势。随着各种扇出型 WLP (FOWLP) 的进步,与扇入型 WLP 相比,它是一种更优化、更有前景的解决方案,因为它可以在设计更多输入/输出 (I/O) 数量、多芯片、异构集成和三维 (3D) 系统级封装 (SiP) 方面提供更大的灵活性。嵌入式晶圆级球栅阵列 (eWLB) 是一种扇出型 WLP,可实现需要更小外形尺寸、出色散热和薄型封装轮廓的应用,因为它有可能以经过验证的制造能力和生产良率发展为各种配置。eWLB 是一种关键的先进封装,因为它具有更高的 I/O 密度、工艺灵活性和集成能力。它有助于在一个封装中垂直和水平地集成多个芯片,而无需使用基板。结构设计和材料选择对工艺良率和长期可靠性的影响越来越重要,因此有必要全面研究影响可靠性的关键设计因素。
本论文的目的是研究使用 ECR(电子回旋共振)氢等离子体技术的低温原位清洗工艺和使用 HF 浸渍法的原位清洗工艺,用于低温硅同质外延生长。在 MS-CVD(多室化学气相沉积)反应器上安装了负载锁室,以降低将污染物引入系统的可能性。选择 ECR 等离子体系统是因为与传统的 RF(射频)系统相比,它可以以良好调节的方式输送更高密度的低能离子。选择氢气是因为氢气质量轻,并且能够与表面污染物发生化学反应。在原位清洗的晶圆顶部沉积外延层,并通过 XTEM(横截面透射电子显微镜)和 RBS(卢瑟福背散射光谱)技术研究外延层和外延层/衬底界面的结构质量。使用 SIMS(二次离子质谱)检测界面处的氧和碳污染物。
用于 mmWave 封装测试的 xWave 平台 • 信号完整性 – 短阻抗控制共面波导 (CPW) – 测试仪和 DUT 之间的 1 个转换(连接器到引线框架) – DUT 球接触 CPW • 集成解决方案(PCB/接触器合一) – 包括从测试仪到 DUT 的完整 RF 路径 – 用于电源和控制信号的 Pogo 引脚 • 生产封装测试解决方案 – 坚固的引线框架可持续数百万次循环 – 机械组装完全可现场维护 – 包括校准套件(s 参数) – 用于三温测试(-55 至 155°C)的 CTE 匹配材料
范围和章节大纲 本章旨在简要概述晶圆级封装 (WLP),包括晶圆级芯片规模封装 (WLCSP) 和扇出型封装,作为这些技术未来发展路线图的背景。本文并非旨在提供详细的历史,也不是与这些技术相关的所有可能的结构、工艺和材料的详细描述。在有关该主题的各种文章和书籍中可以找到更详细的信息。本章试图回顾 WLP 技术迄今为止的发展,并预测未来的需求和挑战。 晶圆级封装是指在晶圆仍为晶圆时对芯片进行封装,可以单独封装,也可以与其他芯片或其他组件(例如分立无源器件)或功能组件(例如微机电系统 (MEMS) 或射频 (RF) 滤波器)组合封装。这允许使用异构集成进行晶圆级和面板级封装。尽管从定义上讲,WLP 历来都是使用直径为 200 毫米或 300 毫米的圆形晶圆格式生产的,但多家供应商正在将类似的制造方法扩展到矩形面板格式。这将允许不仅在晶圆级基础设施(晶圆级封装,或 WLP)上制造异构封装,而且还可以在面板级基础设施(面板级封装,或 PLP)上制造异构封装。本章将包括异构集成路线图 (HIR) 的 WLP 和 PLP 格式。本章分为 7 个部分:1. 执行摘要 2. 晶圆级封装的市场驱动因素和应用 3. 晶圆级封装概述:技术、集成、发展和关键参与者 4. 技术挑战 5. 供应链活动和注意事项 6. 总结、最终结论和致谢 7. 参考文献