动态再结晶完成后,在附加塑性变形热的作用下,部分较大晶粒吞噬较小晶粒并融合为较大晶粒,导致晶粒长大。由于塑性变形热小于摩擦热输入,因此增加进给速率引起的晶粒尺寸增大较小。发生动态回复和连续动态再结晶,其特征是亚晶粒形成和大晶粒相变比例增加。随着应变的增加,大晶粒相变转变为大晶粒相变,大晶粒相变数量分数越大,表示再结晶程度越高。如图7所示,N0.1和NO.2的大晶粒相变数量分数大于NO.3,说明NO.1和NO.2的再结晶程度
3D打印,又称增材制造(AM),自1987年以来得到了迅速发展。与传统制造方法相比,3D打印具有提高材料利用率、减少材料浪费等优势。马氏体时效钢具有良好的强度和韧性,且不损失延展性,已用于3D打印技术。选择性激光熔化(SLM)是3D打印方法之一,主要用于金属和合金粉末。本文将选择性激光熔化用于马氏体时效钢。3D打印马氏体时效钢是一种新材料,关于3D打印马氏体时效钢性能的研究仍在进行中。由于腐蚀成本高,耐腐蚀性是马氏体时效钢最重要的性能之一。因此,本论文将重点研究3D打印马氏体时效钢的腐蚀行为。本论文的目的是找到高耐腐蚀性的最佳热处理条件,并找到马氏体时效钢微观结构与腐蚀行为之间的关系。本文使用了几种具有不同热处理条件的马氏体时效钢样品。 SLM、SLM奥氏体化&淬火、SLM时效、常规奥氏体化&淬火、常规时效。此外,还制备了两种溶液,NaOH(pH=11.5)和Na2SO4(pH=6.5)。使用光学显微镜观察微观结构。SLM和常规样品的晶粒尺寸不同,不同热处理条件的样品的晶粒尺寸也不同。使用动电位极化法测量腐蚀行为。与常规样品相比,SLM样品的电流密度低得多,钝化电位和腐蚀速率相似。但由于缺乏进一步的实验,腐蚀行为之间的关系可能受到多种因素的综合影响。
环保技术。XRD 测量揭示了晶粒尺寸。SEM、WH 分析辅助 XRD 图案分析。FTIR 分析用于研究非晶态结晶纳米二氧化硅的功能组和键拉伸。光学研究表明,它将增强催化性能,在 UV 范围内具有吸收,带隙在 1.76 eV 范围内。天然来源的磁光设备。结晶纳米二氧化硅、磁性铁氧体和 PVDF 聚合物可用于制造磁性聚合物。XRD 分析揭示了纳米复合材料的形成。发现了磁性聚合物的亚铁磁性。纳米二氧化硅/铁氧体/PVDF 复合材料具有磁滞回线,表明它们可以用作聚合物磁体。
摘要:本文报道了一种简单廉价的湿化学法合成 Fe/Cr 共掺杂氧化铜纳米粒子的详细方法。用溶胶-凝胶化学法制备的纯 CuO 纳米粒子和 Fe、Cr 取代的 CuO 纳米粒子适合工业应用。初步的 X 射线衍射和 Rietveld 细化研究表明,该纳米粒子具有纯晶体性质,单斜晶体具有 C2/c 相。根据 Scherrer 公式计算的平均晶粒尺寸为 21nm 量级,进一步的观察表明,随着浓度的增加,晶体尺寸增加。扫描电子显微镜 (SEM) 图像显示粒子在 20-30nm 范围内。拉曼光谱研究表明,掺杂 Cr 和 Fe 的 CuO 纳米粒子中存在分子团。
几十年来,晶界工程已被证明是调整金属材料机械性能的最有效方法之一,尽管由于晶粒尺寸在受到热负荷时迅速增加(晶体边界的热稳定性低),可实现的微观结构的细度和类型受到限制。在这里,我们部署了一种独特的化学边界工程 (CBE) 方法,增加了可用合金设计策略的多样性,这使我们能够创建一种即使在高温加热后也具有超细分级异质微观结构的材料。当应用于碳含量仅为 0.2 重量%的普通钢时,这种方法可产生超过 2.0 GPa 的极限强度水平,同时具有良好的延展性(>20%)。虽然这里展示的是普通碳钢,但 CBE 设计方法原则上也适用于其他合金。
摘要:这项研究的目的是确定工艺壳烧结技术中产生的钾质瓷器制成的牙齿假体的特征。使用2 K进行温度和烧结时间作为控制因素的阶乘计划,考虑了两种为数学建模提供数据的类型的舞会,从而获得了制造参数的主要影响。电阻和CERA摄影测试。该材料具有屈曲阻力,范围为95至126 MPa,回收率为2%至26%。根据最佳数据,在这种玻璃体陶瓷材料中以1.4和2.4%存在一些晶体,在两个烧结系统的理想烧结条件下,平均晶粒尺寸为9和14μm。这些发现指向涉及医疗区域和牙科陶瓷材料中添加剂制造的应用新方向。
功率模块中的引线键合是封装中最薄弱的环节之一,通常会导致整个功率模块故障。与 CTE 不匹配相关的引线键合中的热机械应力会导致裂纹扩散到键合界面附近的区域。在本文中,键合过程后的扫描电子显微镜 (SEM) 分析清楚地显示了引线和芯片金属化界面附近的小晶粒和不同的纹理。为了提高引线键合的可靠性,建议在功率模块制造后进行热处理。热处理通过增加晶粒尺寸、降低位错密度和合并引线和金属化的晶粒,对键合区域产生积极影响。此外,已进行的功率循环显示,与由未经处理的相同(交付时)功率 IGBT 模块组成的参考产品相比,经过热处理的功率模块的使用寿命有所增加。
摘要 已经通过实验测量了波长范围为 300 – 1,100 nm 的广谱太阳辐射对不同粒径范围的水和二氧化碳冰的穿透深度。这两种冰成分都在火星表面被发现,并被观测到为表面霜冻、积雪和冰盖。之前已经测量过雪和板冰的 e 折叠尺度,但了解这些最终成员状态之间的行为对于模拟与火星上冰沉积物相关的热行为和表面过程非常重要,例如晶粒生长和通过烧结形成板冰,以及二氧化碳喷射导致蜘蛛状物形成。我们发现穿透深度随着晶粒尺寸的增加而以可预测的方式增加,并且给出了一个经验模型来拟合这些数据,该模型随冰成分和晶粒尺寸而变化。
抽象的自我修复材料已被认为是一种有希望的下一代材料。其中,自我修复的陶瓷起着特别重要的作用,必须更好地理解它们。因此,在这项研究中,我们将基于氧化动力学的构造模型应用于自我修复陶瓷(氧化铝/SIC复合材料)中一系列损害治疗过程的有限元分析。在有限元分析中,使用裂缝机械模型的微观质量分布的数据(例如相对密度,大小和毛孔的纵横比和晶粒尺寸)作为输入值,并反映在连续损伤模型的参数上。然后,我们进行了3分弯曲分析,以考虑在一定温度和氧气部分压力条件下的自我修复效应以及陶瓷强度的散射。我们的结果证实,所提出的方法可以合理地重现自愈合陶瓷中的强度恢复和损害传播行为。
采用粉末冶金法合成金属基纳米复合材料,以二氧化铈 (CeO 2 ) 纳米粒子 (1、2、3、4 wt.%) 作为增强体,包含在铝 (Al) 金属基体中。研究了铝的结构和力学性能随增强 CeO 2 纳米粒子浓度的变化。采用共沉淀技术合成二氧化铈纳米粒子,其结构为面心立方 (fcc),平均晶粒尺寸为 12.80 nm。纳米复合材料的结构分析证实了 CeO 2 纳米粒子在铝基体中均匀分散。由于 CeO 2 纳米粒子的存在,铝的硬度值有显著提高,当铝基体中 CeO 2 的含量为 2 wt.% 时,硬度值最大,同时与纯铝相比,Al-CeO 2 纳米复合材料的磨损有所增加。腐蚀分析也证实了 Al-CeO 2 纳米复合材料耐腐蚀性能的提高,当 Al 基质中 CeO 2 的含量为 4 wt.% 时,耐腐蚀效率最高为 83.75%。