摘要:通过气体保护金属电弧焊 (GMAW) 进行线弧增材制造 (WAAM) 是生产大体积金属部件的合适选择。主要挑战是电弧对生成的层具有高且周期性的热输入,这直接影响层的几何特征(例如高度和宽度)以及冶金性能(例如晶粒尺寸、凝固或材料硬度)。因此,必须减少能量输入进行处理。这可以通过短弧焊接方案和相应的节能焊接工艺来实现。进一步降低能量的高效策略是在焊接过程中调整接触管与工件的距离 (CTWD)。基于电流控制的 GMAW 工艺,由于延伸电极的电阻率增加和电源电压恒定,CTWD 的增加导致焊接电流降低。本研究展示了在低合金钢 WAAM 过程中系统调整 CTWD 的结果。由此,可以实现高达 40% 的能源节约,从而适应增材制造工件的几何和微观结构特征。
晶粒尺寸是确定性的微观结构特征,可以使六角形封闭式(HCP)金属中变形的作用。尽管变形孪生是改善结构合金强度 - 降解性权衡的最有效机制之一,但随着晶粒尺寸的减少,其激活降低。这项工作报告了通过引入延性延展性的以身体为中心的立方体(BCC)纳米层接口的细粒度HCP微结构中变形孪生激活的发现。利用基于激光的添加剂制造的快速凝固和冷却条件,以获得精细的微观结构,并与强化的内在热处理结合使用,允许生成BCC纳米层。原位高能同步加速器X射线衍射允许实时跟踪机械孪生的激活和演变。获得的发现显示了延性纳米层的潜力,用于具有改善寿命跨度的HCP损伤耐受材料的新设计。
摘要 250 ℃低温时效处理可显著提高电子束定向能量沉积 (EB-DED) 制备的 NiTi 合金的拉伸超弹性能。然而由于晶粒尺寸较大,需要很长的时效时间 (长达 200 h) 才能获得优异的拉伸超弹性能。为了加速时效进程,在时效处理之前通过人工热循环处理引入高密度位错(EB-DED 处理的 NiTi 合金中原始位错含量很低),这将促使后续在低温时效处理过程中均匀析出纳米级 Ni 4 Ti 3 颗粒。其相变行为始终保持稳定的两阶段马氏体相变。在 6% 应变循环拉伸试验下,经过热循环处理后,24 h 时效试样经过 10 次循环后的回复率仍在 90% 以上,与未进行热循环处理时效 200 h 的试样性能相当,时效效率大幅提高。
材料的质超塑性是一个重要研究的重要领域,因为它在流动机制领域中呈现出重要的挑战,并且因为它形成了商业超规模形成行业的基础,其中复杂形状和弯曲部分是由超塑性金属形成的[1,2]。众所周知,必须满足两个基本要求才能达到超塑性流。首先,超塑性需要很小的晶粒尺寸,典型的小于约10μm。其次,超塑性是一个具有晶粒边界(GB)滑动的扩散控制过程 - 作为主要流动机制 - 因此,它需要相对较高的测试温度,通常在或高于约0.7-0.8×T m,其中T m是材料的绝对熔化温度。同时,在过去的二十年中,金属材料的开发通过严重的塑料变形(SPD)进行了纳米化范围的超细晶粒,从而铺平了朝着超塑性领域的新发现铺平的道路[3,4]。实际上,
TI-6AL-4V文章是使用直接能量沉积(DED)类型的高级添加剂制造技术生产的。该添加剂制造过程的关键独特特征是通过低压(<20kV)气体驱动式EB枪生成的空心锥电子束,用于加热和融化基板和轴向饲养的电线。这样的配置确保从电线端到基板,融合区域的特定温度梯度以及液态金属池的热流。3D制造过程中加热,熔化和冷却的这种条件为可控的微观结构形成(包括晶粒尺寸和材料纹理)提供了能力。讨论了加工参数和冷却条件对结晶,晶粒形成和固化材料内部结构的影响。优化处理参数允许生产具有各向同性微结构和机械性能的3D Ti-6al-4V文章,这些特性满足了TI-6AL-4V合金的标准要求。
我们发现,许多经典概念需要扩展,以适应 AM(特别是激光粉末床熔合)中存在的特定微观结构(晶粒尺寸和形状、晶体结构)和缺陷分布(空间排列、尺寸、形状、数量)。例如,缺陷的 3D 表征变得至关重要,因为 AM 中的缺陷形状多种多样,对疲劳寿命的影响方式与传统生产的部件不同。这些新概念对解决 AM 部件疲劳寿命确定的方法有直接影响;例如,由于仍然缺少缺陷分类和可容忍形状和尺寸的量化,因此必须定义一种新策略,即理论计算(例如 FEM)允许确定最大可容忍缺陷尺寸,并且需要无损检测 (NDT) 技术来检测此类缺陷是否确实存在于组件中。这些示例表明,AM 部件的组件设计、损坏和故障标准以及特性(和/或 NDT)如何完全相互关联。我们得出结论,这些领域的均质化代表了工程师和材料科学家当前面临的挑战。
早期研究表明,有机和无机半导体材料是用于温度传感器最有前途的材料。在这篇简短的综述中,我们将关注温度传感器及其在各个领域的应用。此外,我们还研究了纳米结构 ZnO 和 ZnO-CuO 纳米复合材料的温度传感特性。为此,通过化学沉淀法合成了 ZnO 和 ZnO-CuO 纳米复合材料。还进行了传感材料的扫描电子显微镜和 X 射线衍射。ZnO 和 ZnO-CuO 的平均晶粒尺寸分别为 45 和 68 纳米。在室温环境下,使用液压机(MB Instrument,德里)在 616 MPa 的压力下将合成粉末制成颗粒。将该颗粒放入 Ag-颗粒-Ag 电极配置中以进行温度传感。计算了上述半导体氧化物的温度灵敏度。材料的电性能决定了这些传感颗粒的半导体性质。此外,还估算了ZnO和ZnO-CuO纳米复合材料的活化能。关键词:温度传感器,灵敏度,活化能,阿伦尼乌斯图。
物理特性 颜色 目测 象牙色 密度 g/cm3 ASTM C373-88, ASTM C20 3.91 晶粒尺寸 微米 ASTM E112-10 25 结晶相 % Alpha XRD 100 吸水率 % ASTM C373-88 0% 抗弯强度 PSI 3 点 PSI ASTM C1161, F417 39,870 弹性模量 GPA per ASTM C1198 ASTM C1198 347 泊松比 ASTM C848 0.22 抗压强度 (PSI) ASTM C773 323,000 硬度 (GPA) ASTM C1327 维氏 1342 断裂韧性 MPa√m 单边缺口 4.19 添加剂 (YtO3) Wt% ICPMS N/A 杂质 (SiO2 ) PPM GDMS <500 杂质 (Na2O) PPM GDMS <400 杂质 (CaO) PPM GDMS <400 杂质 (K2O) PPM GDMS <100 杂质 (Fe2O3) PPM GDMS <400 杂质 (TiO2) PPM GDMS <100 杂质 (C) PPM GDMS <50 杂质 (S) PPM GDMS <50
我们发现,许多经典概念需要扩展,以适应 AM(特别是激光粉末床熔合)中存在的特定微观结构(晶粒尺寸和形状、晶体结构)和缺陷分布(空间排列、尺寸、形状、数量)。例如,缺陷的 3D 表征变得至关重要,因为 AM 中的缺陷形状多种多样,对疲劳寿命的影响方式与传统生产的部件不同。这些新概念对确定 AM 部件疲劳寿命的方式有直接影响;例如,由于仍然缺少缺陷分类和可容忍形状和尺寸的量化,因此必须定义一种新策略,即理论计算(例如 FEM)允许确定最大可容忍缺陷尺寸,并且需要无损检测 (NDT) 技术来检测此类缺陷是否确实存在于组件中。这些示例表明,AM 部件的组件设计、损坏和故障标准以及特性(和/或 NDT)如何完全相互关联。我们得出结论,这些领域的同质化代表了工程师和材料科学家当前面临的挑战。
光电学和高级材料杂志。22,编号9-10,9月至2020年10月,第1页。 518-522氟掺杂对使用喷雾热解方法沉积的SNO 2薄膜的特性的影响Youssef larbah A,*,Badis rahal A,Mohamed Adnane B A Speptormity Spectry Secardment,Algiers -CRNA -CRNA -CRNA -CRNA 02 BD。Frantz Fanon BP 399 Algiers,奥兰科学技术大学阿尔及利亚B技术系。 USTO-MB,B.P。 1505,31000 El-Mnaouer Oran,Algeria,在本文中,我们报告了通过在400°C下喷射热解沉积的未源源不断和氟掺杂的氧化锡(SNO 2:F)薄膜的结构和光学特性。 XRD分析表明,所有薄膜呈现具有首选方向从(110)变为(211)的四方金红石结构。 平均晶粒尺寸约为50 nm,随着氟的掺入而减小。 扫描电子显微镜(SEM)分析表明,纳米颗粒的大小为78 nm。 这些电影的传播率高85%。 光学差距从3.97到4EV不等。 电气研究表明,这些薄膜具有最低电阻层值的N型电导率,对9.Wt%F的掺杂膜的13(ω/γ)(2020年1月13日收到; 2020年10月22日接受; 2020年10月22日接受)关键词:SNO 2:SNO 2:F,SNO 2:S SNO 2,SNOO 2,喷雾,微观,选择性和电子属性 div>>Frantz Fanon BP 399 Algiers,奥兰科学技术大学阿尔及利亚B技术系。USTO-MB,B.P。 1505,31000 El-Mnaouer Oran,Algeria,在本文中,我们报告了通过在400°C下喷射热解沉积的未源源不断和氟掺杂的氧化锡(SNO 2:F)薄膜的结构和光学特性。 XRD分析表明,所有薄膜呈现具有首选方向从(110)变为(211)的四方金红石结构。 平均晶粒尺寸约为50 nm,随着氟的掺入而减小。 扫描电子显微镜(SEM)分析表明,纳米颗粒的大小为78 nm。 这些电影的传播率高85%。 光学差距从3.97到4EV不等。 电气研究表明,这些薄膜具有最低电阻层值的N型电导率,对9.Wt%F的掺杂膜的13(ω/γ)(2020年1月13日收到; 2020年10月22日接受; 2020年10月22日接受)关键词:SNO 2:SNO 2:F,SNO 2:S SNO 2,SNOO 2,喷雾,微观,选择性和电子属性 div>>USTO-MB,B.P。1505,31000 El-Mnaouer Oran,Algeria,在本文中,我们报告了通过在400°C下喷射热解沉积的未源源不断和氟掺杂的氧化锡(SNO 2:F)薄膜的结构和光学特性。XRD分析表明,所有薄膜呈现具有首选方向从(110)变为(211)的四方金红石结构。平均晶粒尺寸约为50 nm,随着氟的掺入而减小。扫描电子显微镜(SEM)分析表明,纳米颗粒的大小为78 nm。这些电影的传播率高85%。光学差距从3.97到4EV不等。电气研究表明,这些薄膜具有最低电阻层值的N型电导率,对9.Wt%F的掺杂膜的13(ω/γ)(2020年1月13日收到; 2020年10月22日接受; 2020年10月22日接受)关键词:SNO 2:SNO 2:F,SNO 2:S SNO 2,SNOO 2,喷雾,微观,选择性和电子属性 div>>