3D打印金属零件的特性和可维护性取决于各种属性。这些包括化学成分,相,形态,晶粒尺寸和形状的空间分布,晶体学纹理以及各种缺陷。对这些属性的控制仍然是一个令人兴奋的机会和一个重大挑战,因为需要优化的许多过程变体和参数。工业相关的常见添加剂制造合金的所需属性,例如钢,镍,钛,铝和铜合金,以及拟合分级的材料的变化很大,并且需要特定合金的策略来控制其控制。最近的评论涉及有价值的处理 - 微观结构 - 托管关系,但不关注其控制策略。在这里,我们试图统一脱节的文献,并严格回顾控制晶粒结构,阶段和缺陷方面的最新进展。强调了数字工具的新兴使用,例如机械模型和数据驱动的技术,例如机器学习,尺寸分析和控制零件属性的统计方法。最后,我们确定了金属印刷中高影响力研究的机会,并根据现有证据展示未来的前景。
增材制造 (AM),通常称为 3D 打印,是一种革命性的制造技术,在航空航天、医疗和汽车领域具有重大的工业意义。金属增材制造可以制造复杂的精密零件并修复大型部件;然而,由于缺乏工艺一致性,认证目前是一个问题。开发并集成了一种多功能、廉价的过程控制系统,减少了熔池波动的变化并提高了组件的微观结构均匀性。残余微观结构变化可以通过热流机制随几何形状的变化来解释。晶粒面积变化减少了高达 94%,成本仅为典型热像仪的一小部分,控制软件由内部编写并公开提供。这降低了过程反馈控制的实施障碍,可以在许多制造过程中实施,从聚合物增材制造到注塑成型再到惰性气体热处理。