与地面数据中心相比,轨道数据中心具有多项基本优势,尤其是在规模达到 GW 级时。通过使用廉价的太阳能,可以显著节省运营成本,而不受下文讨论的地面太阳能发电场的限制。轨道数据中心可以利用太空中的被动辐射冷却来直接实现低冷却剂温度,从而降低冷却成本。或许最重要的是,它们可以几乎无限地扩展,而不受地球上面临的物理或许可限制,使用模块化快速部署。所有这些都将对环境产生净效益——欧盟委员会最近的一项研究得出结论,轨道数据中心将显著减少电网电力产生的温室气体排放,并消除用于冷却的淡水使用。3
本文定义了一种使用AI来增强人类智能的新方法,以解决最佳目标。我们提出的AI Indigo是通过质量优化进行的,是构成态度的缩写。与人类合作者结合使用时,我们将联合系统Indigovx称为虚拟专家。系统在概念上很简单。我们设想将这种方法应用于游戏或业务策略,人类提供战略环境和AI提供最佳,数据驱动的动作。Indigo通过迭代反馈循环运作,利用人类专家的上下文知识以及AI的数据驱动的见解,以制定和完善策略,以实现明确定义的目标。使用量化的三分学模式,这种杂交使联合团队能够评估策略并完善计划,同时适应实时的挑战和变化。
13 AllAfrica。(2023 年)。坦桑尼亚:司法机构关注司法交付中的人工智能。检索日期:2023 年,来自 https://allafrica.com/stories/202201170099.html#:~:text=THE%20Judiciary%20is%20investing%20heavily,of%20justice %20to%20the%20public
Thomas Hartung 1,2 * , Lena Smirnova 1 , Itzy E. Morales Pantoja 1 , Akwasi Akwaboah 3 , Dowlette-Mary Alam El Din 1 , Cynthia A. Berlinicke 4 , J. Lomax Boyd 5 , Brian S. Caffo 6 , Ben Capello 7 , Cohen Lowry , Lowry 8 . Curley 7 , Ralph Etienne-Cummings 3 , Raha Dastgheyb 10 , David H. Gracias 11,12,13,14,15,16 , Frederic Gilbert 17 , Christa Whelan Habela 10 , Fang Han 18 , Timothy D. 19 , Harris Hill 2 , Eric Hermann , 21 . Qi Huang 11 , Rabih E. Jabbour 22 , Erik C. Johnson 20 , Brett J. Kagan 23 , Caroline Krall 1 , Andre Levchenko 24 , Paul Locke 1 , Alexandra Maertens 1 , Monica Metea 25 , Alysson R. Muotri 227 , Paul Rhealton 28 mus 20 , Jesse D. Plotkin 1 , Paul Roach 29 , July Carolina Romero 1 , Jens C. Schwamborn 30 , Fenna Sille ´ 1 , Alexander S. Szalay 31,32,33 , Katya Tsaioun 1 , Daniel Tornero 35 , Jolstein , Jolstein , 36 . 37
许多受访者认为特定的公司,个人或产品:Chatgpt,Google,Siri,Alexa,Meta,Openai,IBM,Baidu,Baidu,Huawei,Midjourney和Elon Musk经常出现。,changpt是迄今为止最常提到的。技术的通用示例也很常见:手机,智能家居,清扫机器人,配音助手,面部和语音识别以及自动驾驶汽车。尽管虚构,但终结器和天网是常见的响应。受访者还经常提及自动驾驶机器和数据或对大量数据的访问和操作。
艾伦图灵研究所的公共政策项目于 2018 年 5 月成立,旨在开发研究、工具和技术,帮助政府利用数据密集型技术进行创新并改善人们的生活质量。我们与政策制定者一起探索数据科学和人工智能如何为公共政策提供信息并改善公共服务的提供。我们认为,只有将道德和安全考虑放在首位,政府才能从这些技术中获益。请注意,本入门指南是一份动态文档,将随着用户、受影响的利益相关者和相关方的意见而不断发展和改进。我们需要您的参与。请通过 policy@turing.ac.uk 与我们分享反馈。这项研究部分由 ESRC(ES/T007354/1)的资助和使图灵公共政策项目成为可能的公共基金资助。https://www.turing.ac.uk/research/research-programmes/public-policy
研究方向:本报告概述了具有高智力价值和更广泛影响的 IR-GenAI 系统的八个研究方向:(1)IR-GenAI 中的评估挑战和需求;(2)从隐性和显性的人为反馈中学习,以解决可能需要推理的复杂问题;(3)理解和建模不断发展的生成式 AI 信息访问系统的用户;(4)解决或缓解 IR-GenAI 新技术带来的社会技术问题的挑战和潜在解决方案;(5)开发个性化 IR-GenAI 系统的方法;(6)在开发 IR-GenAI 方法时扩展计算、数据和人力时的效率考虑;(7)信息检索在增强 AI 代理中的作用;(8)专门用于信息访问和发现的基础模型。
澳大利亚正处于一个关键的经济关头。本报告通过“经济复杂性”的视角研究了澳大利亚和新加坡的对比战略——经济复杂性是衡量一个国家多样化和复杂生产能力的指标。澳大利亚依赖自然资源,而新加坡则发展了高科技产业和先进服务。我们探讨了人工智能 (AI) 如何改变澳大利亚的经济复杂性。通过分析这些方法和人工智能的作用,我们发现了对澳大利亚未来至关重要的见解。我们的研究结果为政策制定者和商界领袖提供了切实可行的建议,旨在利用人工智能来提高经济复杂性、促进创新并在竞争日益激烈的全球经济中增强韧性。今天的选择将影响澳大利亚几代人的繁荣。
第二,我们讨论法律,技术和行为因素如何提供有关在哪种背景下使用我们的法律-XAI分类法的解释的指导。以信用评分为例,我们演示了法律如何规定可以将哪种类型的解释方法用于特定算法决策系统。我们展示了法律,计算机科学和行为原则的结合如何指导决策者,法律学者和计算机科学家为特定法律领域选择正确的解释方法。第三,我们证明了如何将我们的法律-XAI分类法应用于包括医疗补助,高等教育和自动决策在内的各个领域。我们认为,在创建解释权时,决策者应该更具体。自动化的决定通常可以用大量的解释方法来解释,决策者应指定哪些解释应必须提高决策者的政策目标。我们的法律-XAI分类法可以帮助决策者根据其政策目标确定正确的解释方法。
