“我是一名人力资源沟通专家,拥有五年多的经验。在过去三年中,我一直负责 Hartley 公司的人力资源沟通工作。在这个职位上,我管理一个由三人组成的团队,我们负责向 8,000 名员工传达所有福利和政策。在此职位之前,我的职业生涯始于 General Financial 的人力资源协调员,两年间我学到了很多东西。当我的经理调到 Hartley 时,她邀请我一起负责他们的人力资源沟通工作。我很喜欢在 Hartley 的时光,但我开始考虑下一步该怎么做,因为目前的职位没有太多的成长空间。在我职业生涯的这个阶段,我觉得我已经准备好将我的技能运用到一个更全球化的组织中,以应对一些新挑战,这就是我如此感兴趣的原因这个职位。”这是我的简历:{resume}
任何广告区域。有资格获得7.5 CGPA的任何地方,可以放松OBC的标准(NCL):7.0 CGPA&SC/ST/ST/PWD:6.5 CGPA。●对于每个专业和计划,候选人应提交申请费的单独申请。●主管当局在与候选人资格,访谈和入学条件有关的所有事项中的决定将是最终的,并且对所有候选人具有约束力。如果在入学过程中可能发生任何争议/歧义,则该研究所的决定应为最终决定●在线申请中提供的所有详细信息将被视为最终,并且不会进行任何更改。不提交有效/必需的文件和/或不完整的申请应立即拒绝。
* 可以从上面给出任意一个例子或者其他匹配的例子 4. 阅读给定的场景并回答以下问题: 一个农民在自家后院排成一排的三个大兔子笼里养兔子。每个笼子都漆成不同的颜色 — — 红色、黄色和绿色。直到最近,绿色笼子里的兔子数量还是黄色笼子里的兔子数量的两倍。后来,有一天,农民从左边的笼子里拿出五只兔子,送给了当地学校的宠物角。他还把左边笼子里剩下的兔子的一半搬到了红色的笼子里。 a. 左边笼子是什么颜色的?用解释说明你的答案。
摘要 为了帮助制造企业实现人工智能 (AI) 的价值,我们开始了为期六年的研究和实践,以增强流行且广泛使用的 CRISP-DM 方法。我们通过添加“操作和维护”阶段以及嵌入基于任务的框架将任务与技能联系起来,将 CRISP-DM 扩展为 AI 解决方案的连续、主动和迭代生命周期。我们的主要发现涉及操作和维护 AI 解决方案和管理 AI 漂移的艰难权衡和隐性成本,以及确保在整个 CRISP-DM 阶段中存在领域、数据科学和数据工程能力。此外,我们展示了数据工程如何成为 AI 工作流程中必不可少但经常被忽视的一部分,对这三种能力的参与轨迹提供了新颖的见解,并说明了如何将增强的 CRISP-DM 方法用作 AI 项目的管理工具。
摘要:在超市,购物车是购物的必备工具。传统上,它被顾客在商店内用来在购物期间将商品运送到收银员处,并且设计为不离开商店。对于想要使用传统购物车在商店中找到所需产品的顾客来说,这很不方便,而且浪费时间。我们的目标是开发一种带有智能购物设备的自动移动手推车来解决这个问题。我们的智能购物车基于两轮移动机器人。本项目介绍了智能手推车系统的硬件和软件设计。手推车被建模为两轮移动机器人。传感器将通过向微控制器发送信号来控制机器人。该系统也配备了传感器最后,展示了机器人导航测试的结果。结果是我们基于传感器框架的智能手推车系统可以移动。关键词:智能购物车、传感器、微控制器、直流齿轮电机。一、引言技术一直是创新新理念和连接世界的一条启迪之路,现代世界为我们带来了许多将人与技术联系起来的可能方式,例如物联网和工业自动化。从技术领域开始创新一开始,其意义就是减少不必要的困难和提高人类的生产力。现代世界最重要的休闲活动之一是花时间在商场、购物中心等购物。因此,购物和零售店领域的一项创新可以是智能购物车系统。它会自动跟随顾客而无需推车。智能购物车以 ATmega328 微控制器为核心,代表了零售业的范式转变。通过集成大量传感器、通信模块和数据处理功能,这款智能设备提供了大量功能,旨在简化消费者的购物旅程,同时为零售商提供有关消费者行为和库存管理的宝贵见解。二、文献综述 自动驾驶与人类跟随手推车是由 Shaurya Rajput 和 Nikhil Tanwar 提出的。[1]。它来自 Jaypee 信息技术大学 (JUIT),并于 2021 年出版。该项目基于使用 Arduino 的人类跟随手推车。这辆手推车会自动避开障碍物,并且手推车会跟随特定的人。这个项目将在各个领域有所帮助。它可以用作机场或商场的手推车、军队中的运载车辆、运送药物等。智能购物车是由 Midatani Mohansai 提出的。[2]。它来自 Sathyabama 科学技术研究所,并于 2021 年出版。该项目通过引入物联网概念来连接杂货店中的所有商品,形成了一个自动化智能购物系统。在这个系统中,嵌入了一个廉价的 RF-ID 标签。这款购物车内置了一个系统,使客户可以在购物车上为他们的商品结账,而无需排长队结账。使用 RFID 的智能购物车是由 Shubham Singh、Vaibhav Dwivedi、Shweta Kumari、Salony Gupta 和 Navneet Kumar 提出的。[3]。它来自《新兴技术与创新研究杂志》(JETIR),并于 2021 年出版。该项目是基于物联网 (IoT) 的智能购物车,其中包括射频识别 (RFID) 传感器、Arduino 应用程序。系统设计
⚫ 项目经理(PMgr)和子项目经理(SPMgr)将与经济产业省密切合作,根据本项目的目的和目标开展适当的运营和管理。 ⚫PMgr及SPMgr将掌握国内外相关技术动向,以及掌握和管理整个项目的进度,并根据进度灵活敏捷地审查资金分配和技术开发内容,改变实施结构,加速、改变方向、暂停、纳入新的实施者等。 ⚫ PMgr和SPMgr在制定研发主题目标时,将考虑到AI领域研发的环境可能在短时间内发生巨大变化,营造可根据需要采取以下措施的环境。
人工智能的起源可以追溯到古代关于人工智能诞生的传说。然而,人工智能的正式研究始于 20 世纪中叶,其标志性时刻包括 1943 年沃伦·麦卡洛克和沃尔特·皮茨开发出第一个神经网络模型。20 世纪 50 年代,艾伦·图灵提出了图灵测试,作为衡量机器智能的基准。约翰·麦卡锡于 1956 年创造“人工智能”一词,同年组织达特茅斯研讨会,通常被视为人工智能作为一个独特领域建立的基础事件。随后几十年,人工智能研究经历了波动,快速发展时期与“人工智能寒冬”交织在一起,其特点是资金和兴趣减少。21 世纪迎来了重大突破,特别是在机器学习、深度学习和神经网络领域。
摘要 本文提出了一种使用深度学习卷积神经网络U-net对地表多时相多光谱图像进行分类的方法。使用无人驾驶飞机的多光谱光电系统获取可见光和红外图像,并用于构建该地区的正射影像图。根据获得的数据,训练神经网络来解决检测人造物体的问题。基于深度学习和热物理参数评估的远程监控对象智能识别方法允许使用遗传算法创建背景目标环境。该算法解决了热导率的系数反问题,并提供了材料热物理参数的估计。为了训练模型,引入了 18 类物体,根据人造物体和背景(人为或自然景观)之间的热对比差异进行研究。每天以 4 小时为间隔对地球表面进行 6 次勘测。该实验于2021年夏季进行,具体日期为8月4日至5日。在人造物体的检测和分类任务中,发现该模型表现出具有不同可靠性的适用性。进行的研究表明,在模型运行过程中发现了所需的对象类别。关键词1 深度学习,分类,分割,远程监控,神经网络,遗传算法,背景目标环境,光电系统,热物理参数。人工智能在远程监测数据处理任务中的应用 YY Gromov 1、IN Ishchuk 1、VV Rodionov 1
模仿游戏 我打算考虑“机器能思考吗?”这个问题。首先要对“机器”和“思考”这两个术语进行定义。这些定义可以尽可能反映这些词的正常用法,但这种态度是危险的。如果要通过研究“机器”和“思考”这两个词的常用用法来发现它们的含义,就很难不得出这样的结论:要从诸如盖洛普民意调查之类的统计调查中寻找“机器能思考吗?”这个问题的含义和答案。但这是荒谬的。我不会尝试这样的定义,而是用另一个与之密切相关、用相对明确的词语表达的问题来代替这个问题。这个问题的新形式可以用我们称之为“模仿游戏”的游戏来描述。它由三个人玩,一个男人(A)、一个女人(B)和一个询问者(C),询问者可以是任何性别。询问者待在一个与其他两个人分开的房间里。对于询问者来说,游戏的目标是确定另外两个中哪一个是摘自“计算机器和智能”。Mind,第 LIX 卷,第 236 期,1950 年)。经许可转载。
