摘要。极化滤光片阵列(PFA)摄像机是一种成像装置,能够以快照方式分析光的极化状态。这些摄像机在纳米构造过程中引入的光学缺陷而表现出空间变化,即非均匀性。校准是通过计算成像算法来校正辐射和极化误差的数据的。我们回顾了现有的校准方法,并使用实用的光学采集设置和市售的PFA摄像头应用了它们。评估的目标首先比较了算法在极化误差方面的性能更好,然后研究训练数据的动态范围和极化角刺激的数量的影响。据我们所知,这在以前的工作中尚未完成。 ©作者。 由SPIE发表在创意共享归因4.0未体育许可下。 全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。 [doi:10.1117/1.jei.29.4.041011]据我们所知,这在以前的工作中尚未完成。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jei.29.4.041011]
当前的量子物理学理论和一般相对论本身不允许我们研究重力来源是量子的情况。在这里,我们提出了一种策略,以确定在叠加中存在质量配置的情况下对象的动力学,因此使用量子参考框架(QRF)转换。特别是,我们表明,只要不同分支中的质量配置是通过相对宽度的转换相关的,那么人们就可以使用QRF当前框架的扩展将质量结合质量变化的框架变化。假设在量子协调转换下的动态定律协方差,这允许使用已知的物理学来确定动力学。我们应用此过程来发现探针粒子的运动和质量构造附近的时钟的行为,从而发现了由超级位置的引力物体引起的时间扩张。与其他模型的比较表明,半经典的重力和重力塌陷模型不遵守量子坐标转换下动力学定律的协方差。
在研究的第一部分,我们将暗能量建模为一个标量场,该标量场可以最小或非最小耦合到 Ricci 标量,并给出了宇宙场方程的多个精确解。每个解都对应一种特定的几何形状 — — 平坦、开放或封闭。在下一部分中,我们将分析方法与数值技术相结合,对文献中的几种模型进行分析,这些模型之所以被选中,是因为它们能够代表完整的宇宙历史。目的是研究空间曲率如何影响演化的主要特征。最初,我们假设宇宙由范德华流体组成,但仅凭这一点无法解释后期的加速现象,尽管它解释了膨胀和物质主导的时期。因此,我们将暗能量作为精髓、恰普雷金气体或动态真空能量引入。事实证明,从膨胀时期到物质主导时期的转变将首先发生在开放宇宙中,最后发生在封闭宇宙中。晚期加速的开始也将按此顺序发生。此外,发现正曲率
在本文中,我们提出了RSTAB,这是视频稳定框架的新型框架,该框架通过音量渲染整合了3D多帧融合。与传统方法背道而驰,我们引入了一个3D多框架透视图,以进行稳定的图像,从而解决了全框架生成的挑战,同时保存结构。我们的RSTAB框架的核心在于S Tabilized R Endering(SR),该卷渲染模块,在3D空间中融合了多帧信息。具体来说,SR涉及通过投影从多个帧中旋转的特征和颜色,将它们融合到描述符中以呈现稳定的图像。然而,扭曲的信息的精度取决于降低的准确性,这是受染色体区域显着影响的因素。为了响应,我们介绍了a daptive r ay r ange(arr)模块以整合深度先验,并自适应地定义了投影过程的采样范围。在方面上,我们提出了以光流的光流限制的限制,以进行精确的颜色,以实现精确的颜色。多亏了这三个模块,我们的rstab示例表现出了卓越的性能,与以前的视野(FOV),图像质量和视频稳定性相比,各种数据集的稳定器相比。
个人身份信息 (PII) 是用于识别个人的任何信息。这种类型的数据在暗网上非常有价值,尤其是与凭证信息结合使用时。示例包括全名、带邮政编码的账单地址、出生日期、电子邮件地址、护照号码、国家身份证号码和电话号码。它还包括与某人的在线状态相关的任何内容,例如社交媒体资料。即使是泄露的手机号码等信息也可能被威胁行为者利用进行 SIM 卡交换等社会工程活动,犯罪分子会利用 SIM 卡交换来绕过多因素身份验证并获得对在线帐户的未经授权的访问。
暗网已成为分发攻击者进行操作所需的一切所需的枢纽。exploits很容易获得,从零日漏洞到完全开发的漏洞利用工具包。这些工具通常带有详细的说明,即使是具有有限技术专长的攻击者也可以有效地使用它们。折衷帐户的凭据,无论是公司网络,云服务还是个人资料,都以充满活力的在线市场进行交易,价格取决于目标的价值。预包装的恶意软件,例如勒索软件即服务平台和信息偷走的木马,也很容易访问,大量泄漏的个人数据也可以访问,这些数据会促进网络钓鱼和身份盗窃等次要攻击。
最常见的量子计算形式是电路模型,它类似于经典计算机中使用的电路。门被幺正变换(量子门)取代,位被量子位取代。为了获得计算优势,构建鲁棒且抗噪声的量子门非常重要。完整量子计算 [ 1 , 2 ] 就是一个候选模型,它基于绝热 [ 3 ] 或非绝热 [ 4 ] 演化中的非阿贝尔(矩阵值)几何相。此类完整门仅依赖于系统状态空间的几何形状,因此能够抵御量子演化中的局部错误。完整量子计算的最新理论和实验进展分别可参见参考文献 [ 5 – 13 ] 和 [ 14 – 21 ]。将计算元素限制为量子位的想法是一种任意选择,很可能是出于二进制逻辑的方便。那么为什么是二进制逻辑呢?它只是最简单的非平凡例子:在二进制逻辑中,事物可以是 0 或 1、True 或 False、开或关等等。由于其简单性,难怪第一台计算机就是这样设计的。但我们是否局限于比特?早在 1840 年,Fowler [ 22 ] 就制造出了一种机械三元(三值逻辑)计算设备,1958 年,苏联开发出第一台电子三元计算机 [ 23 ]。尽管三元计算机比二进制计算机有许多优势,但它从未取得过同样广泛的成功。然而,理论上没有什么可以禁止更高维度的计算基础,当涉及到量子计算时更是如此。
• 感光度响应 (ADU/R) • 温度稳定性 (暗帧) • 满阱与抗晕 • 空间分辨率 (MTF-CTF) • 空间线性 • 信噪比转换 (DQE) • 动态范围 • 图像保留 (CsI 函数)