由于引力相互作用的普遍性,人们普遍预期在重新加热期间,当暴胀随着引力子的发射而发生扰动衰减时,会形成随机引力波 (GW) 背景。此前,文献中只考虑了暴胀主要衰减为轻标量和/或费米子粒子对的模型。我们重点研究最终衰变产物中存在矢量粒子对的情况。针对两种典型的暴胀子和矢量场耦合,给出了三体引力暴胀子衰变的差分衰减速率,并据此预测了它们各自的引力波频谱。结果表明,与标量和费米子的情况类似,得到的引力波谱频率太高,以至于当前和不久的将来的引力波探测实验无法观测到,需要设计新的高频引力波探测器。
在没有全息原理 [3, 4, 5] 的传统量子引力解释 [1, 2] 中,量子态是整个宇宙的量子态。在这种解释中,玻恩规则的一个典型应用是暴胀多元宇宙场景 [6, 7, 8]。作者采取不同的方法,在三维反德西特时空/二维共形场论 (AdS 3 /CFT 2 ) 对应 [11, 12, 13, 14] 的背景下,在边界 CFT 2 的强耦合极限 [15, 16, 17, 18, 19, 20, 21, 22, 23],提出了一种基于全息原理 [3, 4, 5] 的量子引力新解释 [9, 10]。在这种量子引力解释中,对基态或空间纯化量子热平衡态,即全息张量网络(HTN)[19, 20, 21]进行非选择性量子测量[24],在量子力学的集合解释中,是通过完全消相干该量子态的量子相干性来实现的。消相干(即可观测量量子干涉的损失)正是通过引入超选择规则算子,然后将作用于 HTN 的希尔伯特空间的可观测量集限制为阿贝尔集(其元素与超选择规则算子可交换)来实现的[25]。作者将这种退相干称为经典化。量子引力的经典化不是经典引力;事实上,HTN 的经典化状态仍然是一种量子态,但却是一种高度非平凡的混合态。由于该量子态是乘积量子本征态的统计混合,因此存在负局部自由度 [10, 25]。到目前为止,我们已经在 HTN 的欧几里德区域对空间进行了经典化,即边界 CFT 2 的纯净量子热平衡态(包括基态)[9, 10, 25, 26]。然后,为了在 Lorentzian 区域中制定时间相关的 HTN,