摘要 金属梁广泛用于汽车行业和机械部件。它们的一些应用包括内燃机的连杆、轴、车轴和齿轮、桥梁结构构件以及机器部件。它们中的大多数在其使用寿命内都会经历各种负载条件,这些负载条件可能会引发裂纹并导致裂纹扩展。这些力可能是拉伸、压缩、内部压力、弯曲或所有这些力的任何组合。裂纹扩展的监测和建模对于机器和结构的稳定性和安全性是必不可少的。基于有限元的二维裂纹扩展模拟器软件 Ansys14.0 用于二维梁中的扩展。在铝梁上进行四点弯曲试验实验并观察裂纹扩展行为。比较了这两个观察结果,即来自 Ansys 和实验的结果。在这项研究中,我们尝试使用指数模型在单边缺口 (SEN) 裂纹梁中开发一种故障预测方法。将预测结果与实验裂纹扩展数据进行了比较。观察结果表明,模型得到的结果与实验数据高度一致。关键词:- SEN
摘要。关键字:分子设计·生成建模·模型·搜索·梁搜索·解码语言模型分子设计是由于有效分子的较大搜索空间而导致的化学合作问题之一。现有的方法基于两种关键编码方法:分子图和文本微笑。分子图编码方法具有表达性和化学意识,因为它们包括原子,键和其他分子证券。基于微笑的方法没有考虑任何化学信息,并将这些分子视为一系列特征。当前的生成分子图和基于微笑的模型了解输入的分布,然后从学习分配中进行采样以生成新的分子。基于微笑的方法容易产生无效的分子,并且尚不在化学上意识到。尽管如此,大型语言模型(LLM)在NATU语言处理(NLP)中的成功导致了强大的LLM方法的开发,这些方法与最先进的分子基于图形的方法具有竞争力。本文显示了如何通过梁搜索对基于碎片的微笑LLM进行训练和采样,以提高产生的分子的有效性,新颖性和独特性。我们在两个标准分子设计数据集上评估了该模型:锌和PCBA。我们表明,我们的模型可以生成具有较高va效率,新颖性和唯一性的精确分子,同时记录结果与最先进的基于分子图的方法相当或更好。
Mercury Plastics LLC是工程定制组件的制造商和设备,水龙头,管道,水过滤和医疗市场的完整系统解决方案,是北美为数不多的公司中为数不多的公司之一积累了丰富的经验,并具有E-Beam处理单元。它已经经营着由粒子加速器技术的世界领导者IBA制造的5 MEV(Mega Electron伏特)E-Beam加速器,已有25年以上。多年来,北极树脂HE2590一直是水星用来生产其管道和水龙头组件的主要材料,需要交联。Borealis HE2590是一种高分子量,完全配制的高密度PE,专门为生产用于饮用水和加热系统的交联管而设计。
1 Department of Physics and Astronomy, University of Turku, 20500 Turku, Finland e-mail: immanuel.c.jebaraj@gmail.com 2 LPC2E / CNRS, UMR 7328, 3A Avenue de la Recherche Scientifique, Orléans, France 3 Space Sciences Laboratory, University of California, Berkeley, CA, USA 4 The Blackett英国伦敦帝国学院物理学系实验室,5数学血浆天体物理学中心,数学系,Ku Leuven,Celestijnenlaan 200B,200B,3001比利时,比利时6皇后玛丽玛丽大学物理学和天文学学院,伦敦伦敦,伦敦,英国7号约翰斯·霍普金斯大学,美国霍普克斯大学,美国洛杉矶大学,美国洛雷尔(Lahosish)物理学,邮政信箱537,751 21瑞典9号乌普萨拉9号实验与应用物理研究所,基尔大学,德国基尔24118,德国基尔10号Heliophysics Science Science Division,NASA Goddard Space Flight Center,Greenbelt,Greenbelt,MD 20771
0.1 最小重量 为了生存,大自然学会了用最少的物质资源生产出极其高效的结构。在这种情况下,效率是对生物体的结构、形式和目的之间相互依存关系的发达认识。对最小重量的需求因生物体的功能和环境而异。空中结构出于需要,已将其结构系统的重量降至最低;相比之下,水生生物仅受重力的影响很小。例如,鲸鱼比任何陆地动物都大得多,它之所以能达到这个大小,只是因为它的身体密度与周围的海水介质相似。一旦在陆地上受到全部重力,鲸鱼就有因自身重量而倒下的危险。在自然界中,有一件事是肯定的,那就是只要重量可以最小化,它就会对新陈代谢有利。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年8月18日发布。 https://doi.org/10.1101/2024.08.18.608488 doi:biorxiv Preprint
应用:• 光镊 — 粒子或粒子聚集体的定向操控• 光通信 — 高带宽信息编码• 量子密码学/计算 — 高维量子信息编码• 灵敏光学检测• 原子、核和粒子物理学的基础科学研究(改进的选择规则、二向色性)
具有 3-D 双曲空间 H 3 。当 h eff = nh 0 时,任何携带暗物质的系统的磁体 (MB) 都提供了任何系统的表示(反之亦然)。MB 能否提供这种表示,作为因果菱形 (cd) 的 3-D 双曲面的镶嵌,定义为 M 4 的未来和过去定向光锥的交点?由 SL (2, Z) 的子群或其用代数整数替换 Z 的泛化标记的镶嵌点将由其统计特性决定。H 3 处神经元磁像的位置将定义 H 3 的镶嵌。镶嵌可以映射到庞加莱盘的模拟 - 庞加莱球 - 表示为未来光锥的 t = T 快照(t 是线性闵可夫斯基时间)。t = T 之后,神经元系统的大小不会改变。镶嵌可以将认知表征定义为一组离散的时空点,其坐标为可分配给表示 MB 的时空表面的有理数的某种扩展。有人可能会认为 MB 具有更自然的圆柱对称性而不是球对称性,因此也可以考虑在 E 1 × H 2 处使用圆柱表示