摘要 — 使用卡尔曼滤波器 (KF) 进行状态估计经常会遇到未知或经验确定的协方差矩阵,从而导致性能不佳。消除这些不确定性的解决方案正在向基于 KF 与深度学习方法混合的估计技术开放。事实上,从神经网络推断协方差矩阵会导致强制对称正定输出。在本文中,我们探索了一种新的循环神经网络 (RNN) 模型,该模型基于黎曼对称正定 (SPD) 流形的几何特性。为此,我们基于黎曼指数图定义了一个神经元函数,该函数取决于流形切线空间上的未知权重。这样,就推导出了一个黎曼成本函数,从而能够使用传统的高斯-牛顿算法将权重作为欧几里得参数进行学习。它涉及计算闭式雅可比矩阵。通过对模拟协方差数据集进行优化,我们展示了这种新方法对于 RNN 的可能性。
1959 年,诺贝尔奖获得者理查德·费曼发表了题为“底部还有足够的空间”的演讲,他强调,为了大幅加快计算速度,我们需要将计算机组件制造得更小——一直到分子、原子甚至基本粒子的大小。在这个层面上,物理学不再由确定性的牛顿力学来描述,而是由概率量子定律来描述。正因为如此,计算机设计师开始思考如何基于非确定性元素设计一台可靠的计算机——这种想法最终导致了现代量子计算的思想和算法。因此,我们有一条加快计算速度的直接途径:学习如何使用分子、原子,然后是基本粒子作为计算设备的构建块。但是,如果我们达到基本粒子的大小会怎样?乍一看,我们似乎将达到计算机速度的绝对极限。然而,正如我们在本文中所展示的,我们可以通过利用基本粒子的内部结构来进一步加快计算速度:例如,质子和中子由夸克组成。有趣的是,相应的数学与所谓的彩色光学计算非常相似——在计算中使用不同颜色的光。
1959 年,诺贝尔奖获得者理查德·费曼发表了题为“底部还有足够的空间”的演讲,他强调,为了大幅加快计算速度,我们需要将计算机组件制造得更小——一直到分子、原子甚至基本粒子的大小。在这个层面上,物理学不再由确定性的牛顿力学来描述,而是由概率量子定律来描述。正因为如此,计算机设计师开始思考如何基于非确定性元素设计一台可靠的计算机——这种想法最终导致了现代量子计算的思想和算法。因此,我们有一条加快计算速度的直接途径:学习如何使用分子、原子,然后是基本粒子作为计算设备的构建块。但是,如果我们达到基本粒子的大小会怎样?乍一看,我们似乎将达到计算机速度的绝对极限。然而,正如我们在本文中所展示的,我们可以通过利用基本粒子的内部结构来进一步加快计算速度:例如,质子和中子由夸克组成。有趣的是,相应的数学与所谓的彩色光学计算非常相似——在计算中使用不同颜色的光。